68 research outputs found

    Nonequilibrium Steady State Driven by a Nonlinear Drift Force

    Full text link
    We investigate the properties of the nonequilibrium steady state for the stochastic system driven by a nonlinear drift force and influenced by noises which are not identically and independently distributed. The nonequilibrium steady state (NESS) current results from a residual part of the drift force which is not cancelled by the diffusive action of noises. From our previous study for the linear drift force the NESS current was found to circulate on the equiprobability surface with the maximum at a stable fixed point of the drift force. For the nonlinear drift force, we use the perturbation theory with respect to the cubic and quartic coefficients of the drift force. We find an interesting potential landscape picture where the probability maximum shifts from the fixed point of the drift force and, furthermore, the NESS current has a nontrivial circulation which flows off the equiprobability surface and has various centers not located at the probability maximum. The theoretical result is well confirmed by the computer simulation.Comment: 10 pages, 4 figure

    Information thermodynamics for a multi-feedback process with time delay

    Full text link
    We investigate a measurement-feedback process of repeated operations with time delay. During a finite-time interval, measurement on the system is performed and the feedback protocol derived from the measurement outcome is applied with time delay. This protocol is maintained into the next interval until a new protocol from the next measurement is applied. Unlike a feedback process without delay, both memories associated with previous and present measurement outcomes are involved in the system dynamics, which naturally brings forth a joint system described by a system state and two memory states. The thermodynamic second law provides a lower bound for heat flow into a thermal reservoir by the (3-state) Shannon entropy change of the joint system. However, as the feedback protocol depends on memory states sequentially, we can deduce a tighter bound for heat flow by integrating out irrelevant memory states during dynamics. As a simple example, we consider the so-called cold damping feedback process where the velocity of a particle is measured and a dissipative feedback protocol is applied to decelerate the particle. We confirm that the heat flow is well above the tightest bound. We also examine the long-time limit of this feedback process, which turns out to exhibit an interesting instability transition as well as heating by controlling parameters such as measurement errors, time interval, protocol strength, and time delay length. We discuss the underlying mechanism for instability and heating, which might be unavoidable in reality.Comment: 5 pages, 4 figure
    • …
    corecore