1,542 research outputs found
Emergent localized states at the interface of a twofold -symmetric lattice
We consider the role of non-triviality resulting from a non-Hermitian
Hamiltonian that conserves twofold PT-symmetry assembled by interconnections
between a PT-symmetric lattice and its time reversal partner. Twofold
PT-symmetry in the lattice produces additional surface exceptional points that
play the role of new critical points, along with the bulk exceptional point. We
show that there are two distinct regimes possessing symmetry-protected
localized states, of which localization lengths are robust against external
gain and loss. The states are demonstrated by numerical calculation of a
quasi-1D ladder lattice and a 2D bilayered square lattice.Comment: 10 pages, 7 figure
Modelling and Simulation of a River-Crossing Operation via Discrete Event Simulation with Engineering Details
From a military standpoint, a river is an area that should be avoided in a potential engagement because of lack of cover and the necessity of dividing the unit while crossing. Thus, a key point of a river-crossing operation is speed. Many efforts have been made to enable faster river crossing by improvement of tactics, techniques, and procedures (TTP). However, improvements in TTP are evaluated by modelling and simulation much less frequently than are the toe-to-toe engagements between two opposing forces, and to our knowledge, this is the first simulation model of brigade-level river crossing with engineering details. This study presents a simulation model of the river-crossing operation, applies real world parameters, and evaluates which tactics are preferable in a particular operational environments. This analysis has led to new operational methods of river crossing that have been suggested by experienced subject-matter experts. For instance, the current Republic of Korea Army Field Manual dictates to rotate river-crossing rafts in all situations, but our experiment suggests that no rotation is preferable when the width of river is less than 400 m based on the statistical analyses, which includes the regression-based meta-modelling and the ANOVA, of our simulation model that embodies the engineering details of river-crossing equipment.Defence Science Journal, Vol. 65, No. 2, March 2015, pp.135-143, DOI:http://dx.doi.org/10.14429/dsj.65.814
Recommended from our members
Cellular energy stress induces AMPK-mediated regulation of YAP and the Hippo pathway.
YAP (Yes-associated protein) is a transcription co-activator in the Hippo tumour suppressor pathway and controls cell growth, tissue homeostasis and organ size. YAP is inhibited by the kinase Lats, which phosphorylates YAP to induce its cytoplasmic localization and proteasomal degradation. YAP induces gene expression by binding to the TEAD family transcription factors. Dysregulation of the Hippo-YAP pathway is frequently observed in human cancers. Here we show that cellular energy stress induces YAP phosphorylation, in part due to AMPK-dependent Lats activation, thereby inhibiting YAP activity. Moreover, AMPK directly phosphorylates YAP Ser 94, a residue essential for the interaction with TEAD, thus disrupting the YAP-TEAD interaction. AMPK-induced YAP inhibition can suppress oncogenic transformation of Lats-null cells with high YAP activity. Our study establishes a molecular mechanism and functional significance of AMPK in linking cellular energy status to the Hippo-YAP pathway
Vitamin D3 Supplementation Reduces the Symptoms of Upper Respiratory Tract Infection during Winter Training in Vitamin D-Insufficient Taekwondo Athletes: A Randomized Controlled Trial
Vitamin D insufficiency may be associated with increased risk of upper respiratory tract infection (URTI) in athletes. This study examined the effects of vitamin D3 supplementation on salivary immune functions and symptoms of URTI in vitamin D-insufficient taekwondo athletes. Twenty-five male taekwondo athletes, aged 19–22 years with vitamin D insufficiency [serum 25-hydroxyvitamin-D concentrations (25(OH)D, 31.3 ± 1.39 nmol/L)], participated in this study. They were randomized to receive 5000 IU/day of vitamin D3 (n = 13) or placebo capsule (n = 12) during 4 weeks of winter training. Blood samples were collected two times (pre- and post-tests) for analyzing serum 25(OH)D concentration while salivary samples were obtained three times (pre-, mid-, and post-tests) for secretory immunoglobulin A (SIgA) and lactoferrin analyses. The symptoms of URTI were reported daily during the intervention. Serum 25(OH)D concentration significantly increased by 255.6% in the vitamin D group, whereas in the placebo group it did not change (p \u3c 0.001). While the significant increase in SIgA was observed in both groups (p \u3c 0.001), elevated salivary lactoferrin level in response to winter training was found only in the placebo group (p = 0.011). The change in serum 25(OH)D concentration was negatively associated with total URTI symptoms (r = −0.435, p = 0.015). Vitamin D3 supplementation may be effective in reducing the symptoms of URTI during winter training in vitamin D-insufficient taekwondo athletes
Integrated Analysis of Interferometric SAR, Satellite Altimetry and Hydraulic Modeling to Quantify Louisiana Wetland Dynamics
Wetland loss in Louisiana has been accelerating due primarily to anthropogenic and nature processes, and is being advocated as a problem with national importance. Accurate measurement or modeling of wetland-wide water level changes, its varying extent, its storage and discharge changes resulting in part from sediment loads, erosion and subsidence are fundamental to assessment of hurricane-induced flood hazards and wetland ecology. Here, we use innovative method to integrate interferometric SAR (InSAR) and satellite radar altimetry for measuring absolute or geocentric water level changes and applied the methodology to remote areas of swamp forest in coastal Louisiana. Coherence analysis of InSAR pairs suggested that the HH polarization is preferred for this type of observation, and polarimetric analysis can help to identi:fy double-bonnce backscattering areas in the wetland. Envisat radar altimeter-measured 18- Hz (along-track sampling of 417 m) water level data processed with regional stackfile method have been used to provide vertical references for water bodies separated by levees. The high-resolution (approx.40 m) relative water changes measured from ALOS PALSAR L-band and Radarsat-l C-band InSAR are then integrated with Envisat radar altimetry to obtain absolute water level. The resulting water level time series were validated with in situ gauge observations within the swamp forest. Furthermore, we compare our water elevation changes with 2D flood modeling from LISFLOOD hydrodynamic model. Our study demonstrates that this new technique allows retrospective reconstruction and concurrent monitoring of water conditions and flow dynamics in wetlands, especially those lacking gauge networks
Rag GTPases are cardioprotective by regulating lysosomal function.
The Rag family proteins are Ras-like small GTPases that have a critical role in amino-acid-stimulated mTORC1 activation by recruiting mTORC1 to lysosome. Despite progress in the mechanistic understanding of Rag GTPases in mTORC1 activation, little is known about the physiological function of Rag GTPases in vivo. Here we show that loss of RagA and RagB (RagA/B) in cardiomyocytes results in hypertrophic cardiomyopathy and phenocopies lysosomal storage diseases, although mTORC1 activity is not substantially impaired in vivo. We demonstrate that despite upregulation of lysosomal protein expression by constitutive activation of the transcription factor EB (TFEB) in RagA/B knockout mouse embryonic fibroblasts, lysosomal acidification is compromised owing to decreased v-ATPase level in the lysosome fraction. Our study uncovers RagA/B GTPases as key regulators of lysosomal function and cardiac protection
- …