7 research outputs found

    Validation of an ICD code for accurately identifying emergency department patients who suffer an out-of-hospital cardiac arrest.

    Get PDF
    AIM: International classification of disease (ICD-9) code 427.5 (cardiac arrest) is utilized to identify cohorts of patients who suffer out-of-hospital cardiac arrest (OHCA), though the use of ICD codes for this purpose has never been formally validated. We sought to validate the utility of ICD-9 code 427.5 by identifying patients admitted from the emergency department (ED) after OHCA. METHODS: Adult visits to a single ED between January 2007 and July 2012 were retrospectively examined and a keyword search of the electronic medical record (EMR) was used to identify patients. Cardiac arrest was confirmed; and ICD-9 information and location of return of spontaneous circulation (ROSC) were collected. Separately, the EMR was searched for patients who received ICD-9 code 427.5. The kappa coefficient (κ) was calculated, as was the sensitivity and specificity of the code for identifying OHCA. RESULTS: The keyword search identified 1717 patients, of which 385 suffered OHCA and 333 were assigned the code 427.5. The agreement between ICD-9 code and cardiac arrest was excellent (κ = 0.895). The ICD-9 code 427.5 was both specific (99.4%) and sensitive (86.5%). Of the 52 cardiac arrests that were not identified by ICD-9 code, 33% had ROSC before arrival to the ED. When searching independently on ICD-9 code, 347 patients with ICD-9 code 427.5 were found, of which 320 were true arrests. This yielded a positive predictive value of 92% for ICD-9 code 427.5 in predicting OHCA. CONCLUSIONS: ICD-9 code 427.5 is sensitive and specific for identifying ED patients who suffer OHCA with a positive predictive value of 92%

    Early hemodynamic assessment using NICOM in patients at risk of developing Sepsis immediately after emergency department triage.

    Get PDF
    BACKGROUND: One factor leading to the high mortality rate seen in sepsis is the subtle, dynamic nature of the disease, which can lead to delayed detection and under-resuscitation. This study investigated whether serial hemodynamic parameters obtained from a non-invasive cardiac output monitor (NICOM) predicts disease severity in patients at risk for sepsis. METHODS: Prospective clinical trial of the NICOM device in a convenience sample of adult ED patients at risk for sepsis who did not have obvious organ dysfunction at the time of triage. Hemodynamic data were collected immediately following triage and 2 hours after initial measurement and compared in two outcome groupings: (1) admitted vs. dehydrated, febrile, hypovolemicdischarged patients; (2) infectious vs. non-infectious sources. Receiver operator characteristic (ROC) curves were calculated to determine whether the NICOM values predict hospital admission better than a serum lactate. RESULTS: 50 patients were enrolled, 32 (64 %) were admitted to the hospital. Mean age was 49.5 (± 16.5) years and 62 % were female. There were no significant associations between changes in hemodynamic variables and patient disposition from the ED or diagnosis of infection. Lactate was significantly higher in admitted patients and those with infection (p = 0.01, p = 0.01 respectively). The area under the ROC [95 % Confidence Intervals] for lactate was 0.83 [0.64-0.92] compared to 0.59 [0.41-0.73] for cardiac output (CO), 0.68 [0.49-0.80] for cardiac index (CI), and 0.63 [0.36-0.80] for heart rate (HR) for predicting hospital admission. CONCLUSIONS: CO and CI, obtained at two separate time points, do not help with early disease severity differentiation of patients at risk for severe sepsis. Although mean HR was higher in those patients who were admitted, a serum lactate still served as a better predictor of patient admission from the ED

    Early hemodynamic assessment using NICOM in patients at risk of developing Sepsis immediately after emergency department triage

    No full text
    BACKGROUND: One factor leading to the high mortality rate seen in sepsis is the subtle, dynamic nature of the disease, which can lead to delayed detection and under-resuscitation. This study investigated whether serial hemodynamic parameters obtained from a non-invasive cardiac output monitor (NICOM) predicts disease severity in patients at risk for sepsis. METHODS: Prospective clinical trial of the NICOM device in a convenience sample of adult ED patients at risk for sepsis who did not have obvious organ dysfunction at the time of triage. Hemodynamic data were collected immediately following triage and 2 hours after initial measurement and compared in two outcome groupings: (1) admitted vs. dehydrated, febrile, hypovolemicdischarged patients; (2) infectious vs. non-infectious sources. Receiver operator characteristic (ROC) curves were calculated to determine whether the NICOM values predict hospital admission better than a serum lactate. RESULTS: 50 patients were enrolled, 32 (64 %) were admitted to the hospital. Mean age was 49.5 (± 16.5) years and 62 % were female. There were no significant associations between changes in hemodynamic variables and patient disposition from the ED or diagnosis of infection. Lactate was significantly higher in admitted patients and those with infection (p = 0.01, p = 0.01 respectively). The area under the ROC [95 % Confidence Intervals] for lactate was 0.83 [0.64-0.92] compared to 0.59 [0.41-0.73] for cardiac output (CO), 0.68 [0.49-0.80] for cardiac index (CI), and 0.63 [0.36-0.80] for heart rate (HR) for predicting hospital admission. CONCLUSIONS: CO and CI, obtained at two separate time points, do not help with early disease severity differentiation of patients at risk for severe sepsis. Although mean HR was higher in those patients who were admitted, a serum lactate still served as a better predictor of patient admission from the ED
    corecore