5 research outputs found

    The phenomena of balanced effect between α-globin gene and of β-globin gene

    No full text
    Abstract Background Thalassemias (TM) are the most common autosomal recessive disorders in Southeast Asian countries. Both α- and β-thalassemia lead to a decrease or absence of globin chains. The most serious of the thalassemia syndromes is thalassemia major which is characterized by a transfusion dependent anemia and subsequent iron overload caused by repeated blood transfusions. It is preventive by genotyping the parents. A better understanding of the laboratory data will help provide an accurate diagnosis of thalassemia major, and prevention and controlling programs in routine laboratories. Case presentation The patient was a one-year-old boy born to non-consanguineous parents. He was referred to our outpatient clinic for hemolytic anemia after a cold. Hematological investigations revealed severe anemia (Hb57 g/dL). The red cells displayed microcytosis, hypochromia and misshapen erythrocytes (MCV48.8 fL, MCH15.7 pg). Capillary electrophoresis (CE) electropherogram revealed normal level of HbA2 (3.2%) and elevated HbF (35.1%). The patient was diagnosed with β-TM, based on severe microcytosis, hypochromia, normal Hb A2 and high Hb F level but no Hb H inclusion at the first visit. Later our molecular analysis revealed compound heterozygosity for codons 41–42 (-TTCT) (HBB: c.126_129delCTTT, β0) and IVS-II-654 (C > T) (HBB: c.316-197C > T, β+) mutation and deletional Hb H (−-SEA/−α3.7). Thus, a combination of Hb H disease and a compound heterozygosity of β+/β0-thalassemia (β+/β0-thal) was finally diagnosed. Conclusions Genotype-phenotype analysis shows that heterozygous mutations in the β-globin gene could affect not only hematological parameters, but also elevate HbA2 levels. These effects could be ameliorated by the coinheritance of Hb H disease, which may be explained by the phenomena of the α-globin gene and of the β-globin gene balanced effect

    Immature platelet fraction related parameters in the differential diagnosis of thrombocytopenia

    No full text
    The pathogenesis of thrombocytopenia can be divided into increased destruction (ID) of platelets in the peripheral blood and decreased production (DP) of platelets in the bone marrow. This study aimed to analyze the efficacy of immature platelet fraction (IPF) related parameters, including the IPF count (IPF#), IPF percentage (IPF%) and highly fluorescence IPF percentage (H-IPF%), measured by XN-9000, in the differential diagnosis of thrombocytopenia. One hundred and twenty healthy volunteers were enrolled in the healthy control (HC) group, and 180 thrombocytopenia patients were grouped into either the increased destruction (ID) group or the decreased production (DP) group according to their final diagnosis. IPF# was significantly lower in the DP group than in the ID and HC groups (P < .01). Among the three groups, the ID group had the highest IPF% and H-IPF%, and the HC group had the lowest IPF% and H-IPF%. The differences between the three groups were all statistically significant (P < .01). In differentiating the ID patients from the DP patients, the areas under the operating characteristics curve of IPF#, IPF% and H-IPF% were 0.859, 0.944 and 0.930, respectively. False positive rates were below 0.04 when IPF#, IPF% and H-IPF% were above 2.65, 7.55 and 2.35, respectively. IPF related parameters showed high efficacy in the differential diagnosis of thrombocytopenia. However, due to the small numerical values of the IPF related parameters in some thrombocytopenia patients, the fluctuations of IPF% and H-IPF% should also be taken into consideration. Though H-IPF% is a new parameter, its effectiveness in the differential diagnosis of thrombocytopenia is not better than IPF%’s

    The Beginning of the End: A Chromosomal Assembly of the New World Malaria Mosquito Ends with a Novel Telomere

    No full text
    Chromosome level assemblies are accumulating in various taxonomic groups including mosquitoes. However, even in the few reference-quality mosquito assemblies, a significant portion of the heterochromatic regions including telomeres remain unresolved. Here we produce a de novo assembly of the New World malaria mosquito, Anopheles albimanus by integrating Oxford Nanopore sequencing, Illumina, Hi-C and optical mapping. This 172.6 Mbps female assembly, which we call AalbS3, is obtained by scaffolding polished large contigs (contig N50 = 13.7 Mbps) into three chromosomes. All chromosome arms end with telomeric repeats, which is the first in mosquito assemblies and represents a significant step toward the completion of a genome assembly. These telomeres consist of tandem repeats of a novel 30-32 bp Telomeric Repeat Unit (TRU) and are confirmed by analyzing the termini of long reads and through both chromosomal in situ hybridization and a Bal31 sensitivity assay. The AalbS3 assembly included previously uncharacterized centromeric and rDNA clusters and more than doubled the content of transposable elements and other repetitive sequences. This telomere-to-telomere assembly, although still containing gaps, represents a significant step toward resolving biologically important but previously hidden genomic components. The comparison of different scaffolding methods will also inform future efforts to obtain reference-quality genomes for other mosquito species
    corecore