21,493 research outputs found

    Preparation of n-qubit Greenberger-Horne-Zeilinger entangled states in cavity QED: An approach with tolerance to nonidentical qubit-cavity coupling constants

    Full text link
    We propose a way for generating nn-qubit Greenberger-Horne-Zeilinger (GHZ) entangled states with a three-level qubit system and (n-1) four-level qubit systems in a cavity. This proposal does not require identical qubit-cavity coupling constants, and thus is tolerant to qubit-system parameter nonuniformity and nonexact placement of qubits in a cavity. The proposal does not require adjustment of the qubit-system level spacings during the entire operation. Moreover, it is shown that entanglement can be deterministically generated using this method and the operation time is independent of the number of qubits. The present proposal is quite general, which can be applied to physical systems such as various types of superconducting devices coupled to a resonator or atoms trapped in a cavity.Comment: 3 figures, accepted by Phys. Rev.

    Testing Bias and EFL Teaching

    Get PDF
    [[issue]]3

    Soliton and 2D domains in ultra-thin magnetic films

    Full text link
    We show that many two dimensional domain patterns observed in Monte Carlo simulations can be obtained from the many soliton solutions of the imaginary time Sine Gordon equation. This opens the door to analytic physical understanding of the micromagnetics in ultra-thin films.Comment: 9 pages, 3 PostScript figure
    corecore