17 research outputs found

    Down-Regulation of Tumor-Associated NADH Oxidase, tNOX (ENOX2), Enhances Capsaicin-Induced Inhibition of Gastric Cancer Cell Growth

    Get PDF
    Gastric cancer is a common human malignancy and a major contributor to cancer-related deaths worldwide. Unfortunately, the prognosis of most gastric cancer patients is poor because they are generally diagnosed at a late stage after the cancer has already metastasized. Most current research, therefore, emphasizes selective targeting of cancer cells by apoptosis-inducing agents. One such therapeutic agent is capsaicin, a component of chili peppers that has been shown to possess anti-growth activity against various cancer cell lines. Here, we examined the effect of capsaicin on SNU-1 and TMC-1 gastric cancer cells and found differing outcomes between the two cell lines. Our results show that capsaicin induced significant cytotoxicity with increases in oxidative stress, PARP cleavage, and apoptosis in sensitive SNU-1 cells. In contrast, TMC-1 cells were much less sensitive to capsaicin, exhibiting low cytotoxicity and very little apoptosis in response to capsaicin treatment. Capsaicin-induced apoptosis in SNU-1 cells was associated with down-regulation of tumor-associated NADH oxidase (tNOX) mRNA and protein. On the contrary, tNOX expression was scarcely affected by capsaicin in TMC-1 cells. We further showed that tNOX-knockdown sensitized TMC-1 cells to capsaicin-induced apoptosis and G1 phase accumulation, and led to decreased cell growth, demonstrating that tNOX is essential for cancer cell growth. Collectively, these results indicate that capsaicin induces divergent effects of the growth of gastric cancer cells that parallel its effects on tNOX expression, and demonstrate that forced tNOX down-regulation restored capsaicin-induced growth inhibition in TMC-1 cells

    RNA interference targeting tNOX attenuates cell migration via a mechanism that involves membrane association of Rac

    No full text
    tNOX, a tumor-associated NADH oxidase, is a growth-related protein present in transformed cells. In this study, we employed RNA interference (RNAi)-mediated down-regulation of tNOX protein expression to explore the role of tNOX in regulating cell growth in human cervical adenocarcinoma (HeLa) cells. In this first reported use of RNAi to decrease tNOX expression, we found that HeLa cell growth was significantly inhibited by shRNA-knockdown of tNOX. Furthermore, cell migration and membrane association of Rac were decreased concomitantly with the reduction in tNOX protein expression. These results indicate that shRNA targeting of tNOX inhibits the growth of cervical cancer cells, and reduces cell migration via a decrease in the membrane association of Rac. We propose that tNOX is a potential upstream mediator of Rho activation that plays a role in regulating cell proliferation, migration, and invasion. (c) 2007 Elsevier Inc. All rights reserved

    Effect of Ccapsaicin on tNOX (ENOX2) protein expression in stomach cancer cells

    No full text
    Tumor-associated NADH oxidase (tNOX, also known as ENOX2) is a growth-related protein expressed in transformed cells. Previous reports have revealed that the inhibition of tNOX activity by the anti-cancer drug, capsaicin. correlates with a reduction in growth of cancer cells. indicating a close relationship between tNOX activity and cell growth. Moreover, the study of depleted tNOX expression by RNA interference in HeLa cells suggests that it may be associated with the ability of tumor cells to acquire an aggressive phenotype, particularly in relation to cell proliferation. A key role for tNOX in regulating cell growth is further supported by the observation that the growth rate of MEF cells from tNOX-overexpressing transgenic mice is approximately two-fold greater than that of wild-type cells. The purpose of this study was to investigate the anti-proliferative effect of capsaicin on tNOX expression level in stomach cancer cells. We showed that capsaicin induced cytotoxicity in SCM cells concomitantly with apoptosis, PARP cleavage, and down-regulation of tNOX protein

    Capsaicin-Mediated tNOX (ENOX2) Up-regulation Enhances Cell Proliferation and Migration in Vitro and in Vivo

    No full text
    Cancer chemoprevention is employed to block or reverse the progression of malignancies. To date, several thousands of agents have been found to possess chemopreventative activity, one of which is capsaicin, a component of chili peppers that exhibits antigrowth activity against various cancer cell lines. However, the role of capsaicin in tumorigenesis remains controversial because both cancer prevention and promotion have been proposed. Here, we made the unexpected discovery that treatment with low concentrations of capsaicin up-regulates tNOX (tumor-associated NADH oxidase) expression in HCT116 human colon carcinoma cells in association with enhanced cell proliferation and migration, as evidenced by down-regulation of epithelial markers and up-regulation of mesenchymal markers. Importantly, tNOX-knockdown in HCT116 cells by RNA interference reversed capsaicin-induced cell proliferation and migration in vitro and decreased tumor growth in vivo. Collectively, these findings provide a basis for explaining the tumor-promoting effect of capsaicin and might imply that caution should be taken when using capsaicin as a chemopreventive agent

    Effect of polyclonal antisera to recombinant tNOX protein on the growth of transformed cells

    No full text
    Previous reports have described a tumor-associated NADH oxidase (tNOX) and its continuous activation in transformed culture cells. Certain anticancer drugs have been shown to inhibit preferentially both the tNOX activity and the growth of transformed culture cells and the cytotoxicity is associated with the induction of apoptosis. To investigate the biological function of tNOX protein, we have raised polyclonal antisera against bacterial expressed tNOX protein and the antisera are able to recognize protein bands in transformed cells but not the non-transformed cells tested. With tNOX antisera treatment, the survival in transformed cell lines is decreased but not the non-transformed cells. In addition, tNOX antisera-induced cytotoxicity is accompanied by the induction of apoptosis. However, slightly higher amount of PARP cleavage and activation of caspase-9 are observed in tNOX antisera treated HCT116 cells. Further experiments have demonstrated the activation of JNK and phosphorylation of p53 by treatment. In addition, tNOX antisera treatment leads to an impressive increase in reactive oxygen species in COS cells but not the control sera. Our data suggest that (a) tNOX antisera treatment may inhibit the growth of transformed cells by inducing apoptosis and (b) the apoptotic mechanism might be through modulating ROS production and JNK pathway

    Inhibitory Effect of Human Breast Cancer Cell Proliferation via p21-Mediated G(1) Cell Cycle Arrest by Araliadiol Isolated from Aralia cordata Thunb

    No full text
    A new polyacetylenic compound, araliadiol, was isolated from the leaves of Aralia cordata Thunb. (Araliaceae). The structure of araliadiol was determined to be 3(S),8(R)-pentadeca-1,9(Z)-diene-4,6-diyne-3,8-diol by MS, NMR, IR, and UV spectroscopic analysis as well as Mosher ester reaction. Araliadiol displayed a significant inhibitory effect on the growth of a human breast adenocarcinoma cell line (MCF-7), with an IC50 value for cytotoxicity of 6.41 mu g/mL. Cell cycle analysis revealed that the proportion of cells in the G(1) phase of the cell cycle increased in a dose-dependent manner (from 54.7% to 72.0%) after 48 h exposure to araliadiol at dosages ranging from 0 to 80 mu M. The results suggest that araliadiol inhibits cell cycle progression of MCF-7 at the G(1)-S transition. After treatment with araliadiol, phosphorylation of retinoblastoma protein (Rb) in MCF-7 cells was inhibited, accompanied by a decrease in the levels of cyclin D-3 and cyclin-dependent kinase 4 (cdk4) and an increase in the expression of p21(WAF-1/Cip1). However, the expression of phosphorylated p53 (Ser15) and Chk2 was not altered in MCF-7 cells. These findings indicate that araliadiol exhibits its growth-inhibitory effects on MCF-7 cells through downregulation of cdk4 and cyclin D-3, and upregulation of p21(WAF-1/Cip1) by a p53-independent mechanism

    Stress-induced down-regulation of tumor-associated NADH oxidase during apoptosis in transformed cells

    No full text
    Tumor-associated NADH oxidase (tNOX) is a growth-related protein expressed in transformed cells. tNOX knockdown using RNA interference leads to a significant reduction in HeLa cell proliferation and migration, indicating an important role for tNOX in growth regulation and the cancer phenotype. Here, we show that tNOX is down-regulated during apoptosis in HCT116 cells. Treatment with diverse stresses induced a dose- and time-dependent decrease in tNOX expression that was concurrent with apoptosis. Moreover, shRNA-mediated tNOX knockdown rendered cells susceptible to apoptosis, whereas re-expression of tNOX partially recovered cell proliferation. Our results indicate that tNOX is suppressed during apoptosis and demonstrate that tNOX down-regulation sensitizes cells to stress-induced growth reduction, suggesting that tNOX is required for transformed cell growth

    ECTO-NOX target for the anticancer isoflavene phenoxodiol

    No full text
    Phenoxodiol, a synthetic isoflavene with clinical efficacy in the management of ovarian and other forms of human cancer, blocked the activity of a cancer-specific and growth-related cell surface ECTO-NOX protein with both oxidative (hydroquinone) and protein disulfide-thiol interchange activity designated tNOX. Purified recombinant tNOX bound phenoxodiol with high affinity (K-d of 50 nM). The tNOX protein appeared to be both necessary and sufficient for the cancer-specific cytotoxicity of phenoxodiol. Growth inhibition of fibroblasts from embryos of mice expressing a tNOX transgene, but not from wild-type mice, was inhibited by phenoxodiol followed by apoptosis. Both the oxidative and protein disulfide-thiol interchange activities that alternate to generate the complex set of oscillations with a period length of 22 min (24 min for the constitutive counterpart CNOX) that characterize ECTO-NOX proteins respond to phenoxodiol. Oxidation of NADH or reduced coenzyme Q10 was rapidly blocked by phenoxodiol. In contrast, the protein disulfide-thiol interchange activity measured either by the restoration of activity to scrambled and inactive RNase or from the cleavage of dithiodipyridine (EC50 Of 50 nM) was inhibited progressively over an interval of 60 min that spanned three cycles of activity. Inhibition of the latter paralleled the inhibition of cell enlargement and the consequent inability of inhibited cells to initiate traverse of the cell cycle. Activities of constitutive ECTO-NOX (CNOX) forms of either cancer or noncancer cells were unaffected by phenoxodiol to help explain how the cytotoxic effects of phenoxodiol may be restricted to cancer cells

    Disturbed mitotic progression and genome segregation are involved in cell transformation mediated by nano-TiO2 long-term exposure

    No full text
    Titanium dioxide (TiO2) nano-particles (<100 nm in diameter) have been of interest in a wide range of applications, such as in cosmetics and pharmaceuticals because of their low toxicity. However recent Studies, have shown that TiO2 nano-particles (nano-TiO2) induce cytotoxicity and genotoxicity in various lines of Cultured cells as well as tumorigenesis in animal models. The biological roles of nano-TiO2 are shown to be controversial and no comprehensive study paradigm has been developed to investigate their molecular mechanisms. In this study, we showed that short-term exposure to nano-TiO2 enhanced cell proliferation, survival, ERK signaling activation and ROS production in Cultured fibroblast cells. Moreover, long-term exposure to nano-TiO2 not only increased cell Survival and growth on soft agar but also the numbers of multinucleated cells and micronucleus (MN) as suggested in confocal Microscopy analysis. Cell cycle phase analysis showed G2/M delay and slower cell division in long-term exposed cells. Most importantly, long-term TiO2 exposure remarkably affected mitotic progression at anaphase and telophase leading to aberrant multipolar spindles and chromatin alignment/segregation. Moreover, PLK1 was demonstrated as the target for nano-TiO2 in the regulation of mitotic progression and exit. Notably, a higher fraction of sub-G1 phase population appeared in TiO2-exposed cells after releasing from G2/M synchronization. Our results demonstrate that long-term exposure to nano-TiO2 disturbs cell cycle progression and duplicated genome segregation, leading to chromosomal instability and cell transformation. (C) 2009 Elsevier Inc. All rights reserved

    Cisplatin transiently up-regulates hHR23 expression through enhanced translational efficiency in A549 adenocarcinoma cells

    No full text
    DNA-damaging agents are commonly used as anticancer therapeutics. Unfortunately, such drugs induced DNA damages as well as DNA repair are important in mediating drug resistance to cancer treatments. To evaluate changes in DNA repair proteins that occur in DNA damage agent treatment, we challenged human A549 lung adenocarcinoma cells with cisplatin. hHR23/RAD23, an accessory protein involved in nucleotide-excision repair (NER) at an early lesion-recognition step, was upregulated by cisplatin in a dose- and time-dependent manner. Upregulation of hHR23 expression by low-dose cisplatin was accompanied by an increase in p53, p21, and XPC protein levels. Importantly, knockdown of hHR23B by RNA interference decreased DNA repair activity, cell survival, and induction of p53 and XPC following treatment with cisplatin. Conversely, overexpression of hHR23B enhanced repair activity towards cisplatin-damaged DNA. Inhibition of MEK/ERK and phosphoinositide 3-kinase (PI3K)/AKT signaling pathways attenuated cisplatin-induced hHR23 expression, indicating that these pathways are involved in the process. The increase in hHR23 protein expression mediated by MEK/ERK signaling was due to increased translational efficiency resulting from phosphorylation/activation of the translation-initiating factor eIF-4B. Taken together, these results suggest that cisplatin-induced increases in hHR23 levels are regulated by proliferative signaling pathways and important for DNA repair. (C) 2011 Elsevier Ireland Ltd. All rights reserved
    corecore