78 research outputs found

    Aluminium oxide in the atmosphere of hot Jupiter WASP-43bv

    Get PDF
    We have conducted a re-analysis of publicly available Hubble Space Telescope Wide Field Camera 3 (HST WFC3) transmission data for the hot-Jupiter exoplanet WASP-43b, using the Bayesian retrieval package Tau-REx. We report evidence of AlO in transmission to a high level of statistical significance (>5σ in comparison to a flat model, and 3.4σ in comparison to a model with H2O only). We find no evidence of the presence of CO, CO2, or CH4 based on the available HST WFC3 data or on Spitzer IRAC data. We demonstrate that AlO is the molecule that fits the data to the highest level of confidence out of all molecules for which high-temperature opacity data currently exists in the infrared region covered by the HST WFC3 instrument, and that the subsequent inclusion of Spitzer IRAC data points in our retrieval further supports the presence of AlO. H2O is the only other molecule we find to be statistically significant in this region. AlO is not expected from the equilibrium chemistry at the temperatures and pressures of the atmospheric layer that is being probed by the observed data. Its presence therefore implies direct evidence of some disequilibrium processes with links to atmospheric dynamics. Implications for future study using instruments such as the James Webb Space Telescope are discussed, along with future opacity needs. Comparisons are made with previous studies into WASP-43b

    On the Compatibility of Ground-based and Space-based Data: WASP-96 b, an Example

    Get PDF
    The study of exoplanetary atmospheres relies on detecting minute changes in the transit depth at different wavelengths. To date, a number of ground- and space-based instruments have been used to obtain transmission spectra of exoplanets in different spectral bands. One common practice is to combine observations from different instruments in order to achieve a broader wavelength coverage. We present here two inconsistent observations of WASP-96 b, one by the Hubble Space Telescope (HST) and the other by the Very Large Telescope (VLT). We present two key findings in our investigation: (1) a strong water signature is detected via the HST WFC3 observations and (2) a notable offset in transit depth (>1100 ppm) can be seen when the ground-based and space-based observations are combined. The discrepancy raises the question of whether observations from different instruments could indeed be combined. We attempt to align the observations by including an additional parameter in our retrieval studies but are unable to definitively ascertain that the aligned observations are indeed compatible. The case of WASP-96 b signals that compatibility of instruments should not be assumed. While wavelength overlaps between instruments can help, it should be noted that combining data sets remains risky business. The difficulty of combining observations also strengthens the need for next-generation instruments that possess broader spectral coverage

    Mineral cloud and hydrocarbon haze particles in the atmosphere of the hot Jupiter JWST target WASP-43b

    Get PDF
    Context: Having a short orbital period and being tidally locked makes WASP-43b an ideal candidate for the James Webb Space Telescope (JWST) phase curve measurements. Phase curve observations of an entire orbit will enable the mapping of the atmospheric structure across the planet, with different wavelengths of observation allowing different atmospheric depths to be seen. Aims: We provide insight into the details of the clouds that may form on WASP-43b and their impact on the remaining gas phase, in order to prepare the forthcoming interpretation of the JWST and follow-up data. Methods: We follow a hierarchical modelling strategy. We utilise 3D GCM results as input for a kinetic, non-equilibrium model for mineral cloud particles and for a kinetic model to study a photochemically-driven hydrocarbon haze component. Results: Mineral condensation seeds form throughout the atmosphere of WASP-43b. This is in stark contrast to the ultra-hot Jupiters, such as WASP-18b and HAT-P-7b. The dayside is not cloud free but it is loaded with few yet large mineral cloud particles in addition to hydrocarbon haze particles of a comparable abundance. Photochemically driven hydrocarbon haze appears on the dayside, but it does not contribute to the cloud formation on the nightside. The geometrical cloud extension differs across the globe due to the changing thermodynamic conditions. Day and night differ by 6000 km in pressure scale height. As reported for other planets, the C/O is not constant throughout the atmosphere and varies between 0.74 and 0.3. The mean molecular weight is approximately constant in a H2- dominated WASP-43b atmosphere because of the moderate day/night-temperature differences compared to the super-hot Jupiters. Conclusions: WASP-43b is expected to be fully covered in clouds which are not homogeneously distributed throughout the atmosphere. The dayside and the terminator clouds are a combination of mineral particles of locally varying size and composition as well as of hydrocarbon hazes. The optical depth of hydrocarbon hazes is considerably lower than that of mineral cloud particles such that a wavelength-dependent radius measurement of WASP-43b would be determined by the mineral cloud particles but not by hazes

    Cross-sections for heavy atmospheres: Hâ‚‚O continuum

    Get PDF
    Most of the exoplanets detected up to now transit in front of their host stars, allowing for the generation of transmission spectra; the study of exoplanet atmospheres relies heavily upon accurate analysis of these spectra. Recent discoveries mean that the study of atmospheric signals from low-mass, temperate worlds are becoming increasingly common. The observed transit depth in these planets is small and more difficult to analyze. Analysis of simulated transmission spectra for two small, temperate planets (GJ 1214 b and K2-18 b) is presented, giving evidence for significant differences in simulated transit depth when the water vapor continuum is accounted for when compared to models omitting it. These models use cross-sections from the CAVIAR lab experiment for the water self-continuum up to 10,000 cm−1; these cross-sections exhibit an inverse relationship with temperature, hence lower-temperature atmospheres are the most significantly impacted. Including the water continuum strongly affects transit depths, increasing values by up to 60 ppm, with the differences for both planets being detectable with the future space missions Ariel and JWST. It is imperative that models of exoplanet spectra move toward adaptive cross-sections, increasingly optimized for H2O-rich atmospheres. This necessitates including absorption contribution from the water vapor continuum into atmospheric simulations

    The ExoMolOP Database: Cross-sections and k-tables for Molecules of Interest in High-Temperature Exoplanet Atmospheres

    Get PDF
    A publicly available database of opacities for molecules of astrophysical interest, ExoMolOP, has been compiled for over 80 species, based on the latest line list data from the ExoMol, HITEMP and MoLLIST databases. These data are generally suitable for characterising high temperature exoplanet or cool stellar/substellar atmospheres, and have been computed at a variety of pressures and temperatures, with a few molecules included at room-temperature only from the HITRAN database. The data are formatted in different ways for four different exoplanet atmosphere retrieval codes; ARCiS, TauREx, NEMESIS and petitRADTRANS, and include both cross-sections (at R~=~λΔλ~=~15,000) and k-tables (at R~=~λΔλ~=~1000) for the 0.3~-~50μm wavelength region. Opacity files can be downloaded and used directly for these codes. Atomic data for alkali metals Na and K are also included, using data from the NIST database and the latest line shapes for the resonance lines. Broadening parameters have been taken from the literature where available, or from those for a known molecule with similar molecular properties where no broadening data are available

    Bringing pupils into the ORBYTS of research

    Get PDF
    Most scientists would consider themselves lucky to publish a research paper while still an undergraduate, but a group of pupils at Highams Park School in East London has co-authored a paper at age 18, thanks to ORBYTS. Original Research By Young Twinkle Scientists (ORBYTS) comprises the core part of EduTwinkle, the education and outreach arm of the upcoming exoplanet space mission Twinkle, led by UK scientists and engineers, and is aimed at A-level students. ORBYTS was founded in 2016 by Clara Sousa-Silva, who was splitting her time teaching at Highams Park School and working as a postdoc at University College London, via the Researchers in Schools programme. This blend of education and research inspired her to set up a scheme enabling young postdoc and PhD students from her research group at UCL, ExoMol, to perform novel research with some of her sixth-form students. ORBYTS now involves more than 30 pupils in eight schools across the UK

    Into the UV: The Atmosphere of the Hot Jupiter HAT-P-41b Revealed

    Get PDF
    For solar system objects, ultraviolet spectroscopy has been critical in identifying sources of stratospheric heating and measuring the abundances of a variety of hydrocarbon and sulfur-bearing species, produced via photochemical mechanisms, as well as oxygen and ozone. To date, fewer than 20 exoplanets have been probed in this critical wavelength range (0.2–0.4 μm). Here we use data from Hubble's newly implemented WFC3 UVIS G280 grism to probe the atmosphere of the hot Jupiter HAT-P-41b in the ultraviolet through optical in combination with observations at infrared wavelengths. We analyze and interpret HAT-P-41b's 0.2–5.0 μm transmission spectrum using a broad range of methodologies including multiple treatments of data systematics as well as comparisons with atmospheric forward, cloud microphysical, and multiple atmospheric retrieval models. Although some analysis and interpretation methods favor the presence of clouds or potentially a combination of Na, VO, AlO, and CrH to explain the ultraviolet through optical portions of HAT-P-41b's transmission spectrum, we find that the presence of a significant H− opacity provides the most robust explanation. We obtain a constraint for the abundance of H−, log(H−)=−8.65±0.62\mathrm{log}({{\rm{H}}}^{-})=-8.65\pm 0.62, in HAT-P-41b's atmosphere, which is several orders of magnitude larger than predictions from equilibrium chemistry for a ~1700–1950 K hot Jupiter. We show that a combination of photochemical and collisional processes on hot hydrogen-dominated exoplanets can readily supply the necessary amount of H− and suggest that such processes are at work in HAT-P-41b and the atmospheres of many other hot Jupiters

    Marvel analysis of the measured high-resolution rovibrational spectra of H232S

    Get PDF
    44325 measured and assigned transitions of H232S, the parent isotopologue of the hydrogen sulfide molecule, are collated from 33 publications into a single database and reviewed critically. Based on this information, rotation-vibration energy levels are determined for the ground electronic state using the Measured Active Rotational-Vibrational Energy Levels (MARVEL) technique. The ortho and para principal components of the measured spectroscopic network of H232S are considered separately. The verified set of 25 293 ortho- and 18 778 para- H232S transitions determine 3969 ortho and 3467 para energy levels. The MARVEL results are compared with alternative data compilations, including a theoretical variational linelist

    The ExoMol database: Molecular line lists for exoplanet and other hot atmospheres

    Get PDF
    The ExoMol database (www.exomol.com) provides extensive line lists of molecular transitions which are valid over extended temperature ranges. The status of the current release of the database is reviewed and a new data structure is specified. This structure augments the provision of energy levels (and hence transition frequencies) and Einstein A coefficients with other key properties, including lifetimes of individual states, temperature-dependent cooling functions, Landé g-factors, partition functions, cross sections, k-coefficients and transition dipoles with phase relations. Particular attention is paid to the treatment of pressure broadening parameters. The new data structure includes a definition file which provides the necessary information for utilities accessing ExoMol through its application programming interface (API). Prospects for the inclusion of new species into the database are discussed
    • …
    corecore