50 research outputs found

    Tuning interlayer spacing of graphene oxide membranes with enhanced desalination performance

    No full text
    Tuning interlayer spacing of graphene oxide membranes with enhanced desalination performanc

    Fundamentals of TiO2 Photocatalysis: Concepts, Mechanisms, and Challenges

    No full text
    Photocatalysis has been widely applied in various areas, such as solar cells, water splitting, and pollutant degradation. Therefore, the photochemical mechanisms and basic principles of photocatalysis, especially TiO2 photocatalysis, have been extensively investigated by various surface science methods in the last decade, aiming to provide important information for TiO2 photocatalysis under real environmental conditions. Recent progress that provides fundamental insights into TiO2 photocatalysis at a molecular level is highlighted. Insights into the structures of TiO2 and the basic principles of TiO2 photocatalysis are discussed first, which provides the basic concepts of TiO2 photocatalysis. Following this, details of the photochemistry of three important molecules (oxygen, water, methanol) on the model TiO2 surfaces are presented, in an attempt to unravel the relationship between charge/energy transfer and bond breaking/forming in TiO2 photocatalysis. Lastly, challenges and opportunities of the mechanistic studies of TiO2 photocatalysis at the molecular level are discussed briefly, as well as possible photocatalysis models

    Photo-switchable smart metal organic framework membranes with tunable and enhanced molecular sieving performance

    No full text
    Photo-switchable smart metal organic framework membranes with tunable and enhanced molecular sieving performanc

    Single Molecule Photocatalysis on TiO 2

    No full text

    Elementary photocatalytic chemistry on TiO2 surfaces

    No full text
    Photocatalytic hydrogen production and pollutant degradation provided both great opportunities and challenges in the field of sustainable energy and environmental science. Over the past few decades, we have witnessed fast growing interest and efforts in developing new photocatalysts, improving catalytic efficiency and exploring the reaction mechanism at the atomic and molecular levels. Owing to its relatively high efficiency, nontoxicity, low cost and high stability, TiO2 becomes one of the most extensively investigated metal oxides in semiconductor photocatalysis. Fundamental studies on well characterized single crystals using ultrahigh vacuum based surface science techniques could provide key microscopic insight into the underlying mechanism of photocatalysis. In this review, we have summarized recent progress in the photocatalytic chemistry of hydrogen, water, oxygen, carbon monoxide, alcohols, aldehydes, ketones and carboxylic acids on TiO2 surfaces. We focused this review mainly on the rutile TiO2(110) surface, but some results on the rutile TiO2(011), anatase TiO2(101) and (001) surfaces are also discussed. These studies provided fundamental insights into surface photocatalysis as well as stimulated new investigations in this exciting field. At the end of this review, we have discussed how these studies can help us to develop new photocatalysis models

    Role of Pt Loading in the Photocatalytic Chemistry of Methanol on Rutile TiO2(110)

    No full text
    As a cocatalyst, Pt is well-known for accepting photoexcited electrons and lowering the overpotential of hydrogen production in photocatalysis, being responsible for the enhanced photocatalytic efficiency. Despite the above existing knowledge, the adsorption of reactants on the Pt/photon-absorber (for example, Pt/TiO2) interface, a prerequisite to understand the photocatalytic chemistry, is extremely difficult to investigate mainly because of the complexity of the powdered material and solution environment. Combining ultrahigh vacuum and well-ordered single crystals, we study the photocatalytic chemistry of methanol on Pt-loaded rutile TiO2(110) using temperature-programmed desorption (TPD) and ultraviolet photoelectron spectroscopy (UPS). Despite the same photocatalytic chemical products (i.e., formaldehyde and surface hydrogen species) as on Pt-free TiO2(110), the subsequent chemistry of surface hydrogen species and the photocatalytic reaction rate are much different. The bridging hydroxyls desorb as water molecules around 500 K on the Pt-free TiO2(110) surface, and by contrast, this desorption channel disappears completely and water and molecular hydrogen desorb at much lower temperature (<300 K) after Pt deposition, which can prevent the recombination of hydrogen species with formaldehyde. More importantly, methanol dissociates into methoxy at the Pt/TiO2(110) interface, which is crucial in the photocatalytic chemistry of methanol on TiO2 surfaces because methoxy is a more effective hole scavenger than methanol itself. The photocatalytic chemical reaction rate is increased by nearly 1 order of magnitude after 0.12 monolayer Pt deposition. This work suggests that Pt loading can promote the dissociation of methanol into methoxy and lower the desorption barrier of molecular hydrogen, which may work cooperatively with separating photoexcited charges to enhance the photocatalytic efficiency. Our work implies the importance of the cocatalysts in affecting the surface structure and adsorption of reactants and products and then improving the photoactivity, in addition to the well known role in charge separation

    Kinetics and Dynamics of Photocatalyzed Dissociation of Ethanol on TiO_2(110)

    No full text
    The kinetics and dynamics of photocatalyzed dissociation of ethanol on TiO_2(110) surface have been studied using the time-dependent and time-resolved femtosecond two-photon photoemission spectroscopy respectively, in order to unravel the photochemical properties of ethanol on this prototypical metal oxide surface. By monitoring the time evolution of the photoinduced excited state which is associated with the photocatalyzed dissociation of ethanol on Ti_(5c) sites of TiO_2(110), the fractal-like kinetics of this surface photocatalytic reaction has been obtained. The measured photocatalytic dissociation rate on reduced TiO_2(110) is faster than that on the oxidized surface. This is attributed to the larger defect density on the reduced surface which lowers the reaction barrier of the photocatalytic reaction at least methodologically. Possible reasons associated with the defect electrons for the acceleration have been discussed. By performing the interferometric two-pulse correlation on ethanol/TiO_2(110) interface, the ultrafast electron dynamics of the excited state has been measured. The analyzed lifetime (24 fs) of the excited state is similar to that on methanol/TiO_2(110). The appearance of the excited state provides a channel to mediate the electron transfer between the TiO_2 substrate and its environment. Therefore studying its ultrafast electron dynamics may lead to the understanding of the microscopic mechanism of photocatalysis and photoelectrochemical energy conversion on TiO_2
    corecore