17 research outputs found

    CO2 dissociation activated through electron attachment on reduced rutile TiO2(110)-1x1 surface

    Full text link
    Converting CO2_2 to useful compounds through the solar photocatalytic reduction has been one of the most promising strategies for artificial carbon recycling. The highly relevant photocatalytic substrate for CO2_2 conversion has been the popular TiO2_2 surfaces. However, the lack of accurate fundamental parameters that determine the CO2_2 reduction on TiO2_2 has limited our ability to control these complicated photocatalysis processes. We have systematically studied the reduction of CO2 at specific sites of the rutile TiO2_2(110)-1x1 surface using scanning tunneling microscopy at 80 K. The dissociation of CO2 molecules is found to be activated by one electron attachment process and its energy threshold, corresponding to the CO2−˙_2^{\dot-}/CO2_2 redox potential, is unambiguously determined to be 2.3 eV higher than the onset of the TiO2_2 conduction band. The dissociation rate as a function of electron injection energy is also provided. Such information can be used as practical guidelines for the design of effective catalysts for CO2_2 photoreduction

    RGB-D Human Action Recognition of Deep Feature Enhancement and Fusion Using Two-Stream ConvNet

    No full text
    Action recognition is an important research direction of computer vision, whose performance based on video images is easily affected by factors such as background and light, while deep video images can better reduce interference and improve recognition accuracy. Therefore, this paper makes full use of video and deep skeleton data and proposes an RGB-D action recognition based two-stream network (SV-GCN), which can be described as a two-stream architecture that works with two different data. Proposed Nonlocal-stgcn (S-Stream) based on skeleton data, by adding nonlocal to obtain dependency relationship between a wider range of joints, to provide more rich skeleton point features for the model, proposed a video based Dilated-slowfastnet (V-Stream), which replaces traditional random sampling layer with dilated convolutional layers, which can make better use of depth the feature; finally, two stream information is fused to realize action recognition. The experimental results on NTU-RGB+D dataset show that proposed method significantly improves recognition accuracy and is superior to st-gcn and Slowfastnet in both CS and CV

    Chitosan Hydrogel as siRNA vector for prolonged gene silencing

    No full text

    Differentiation of Surface and Bulk Conductivities in Topological Insulators via Four-Probe Spectroscopy

    No full text
    International audienceWe show a new method to differentiate conductivities from the surface states and the coexisting bulk states in topological insulators using a four-probe transport spectroscopy in a multiprobe scanning tunneling microscopy system. We derive a scaling relation of measured resistance with respect to varying interprobe spacing for two interconnected conduction channels to allow quantitative determination of conductivities from both channels. Using this method, we demonstrate the separation of 2D and 3D conduction in topological insulators by comparing the conductance scaling of Bi2Se3, Bi2Te2Se, and Sb-doped Bi2Se3 against a pure 2D conductance of graphene on SiC substrate. We also quantitatively show the effect of surface doping carriers on the 2D conductance enhancement in topological insulators. The method offers a means to understanding not just the topological insulators but also the 2D to 3D crossover of conductance in other complex systems

    Interleukin-10 Gene-Modified Dendritic Cell-Induced Type 1 Regulatory T Cells Induce Transplant-Tolerance and Impede Graft Versus Host Disease After Allogeneic Stem Cell Transplantation

    No full text
    Background/Aims: Tr1 cells can induce peripheral tolerance to self- and foreign antigens, and have been developed as a therapeutic tool for the induction of tolerance to transplanted tissue. We explored the feasibility of generating Tr1 cells by using IL-10 gene-modified recipient DCs (DCLV-IL-10) to stimulate donor naive CD4+ T cells. We also investigated some biological properties of Tr1 cells. Methods: DCLV-IL-10 were generated through DCs transduced with a lentivirus vector carrying the IL-10 gene, and Tr1 cells were produced by using DCLV-IL-10 to stimulate naive CD4+ T cells. The effects of Tr1 cells on T-cell proliferation and the occurrence of graft versus host disease (GVHD) following allogeneic stem-cell transplantation (allo-HSCT) were investigated. Results: The DCLV-IL-10-induced Tr1 cells co-expressed LAG-3 and CD49b. Moreover, they also expressed CD4, CD25, and IL-10, but not Foxp3, and secreted significantly higher levels of IL-10 (1,729.36 ± 185.79 pg/mL; P < 0.001) and INF-γ (1,524.48 ± 168.65 pg/mL; P < 0.01) than the control T cells upon the stimulation by allogeneic DCs. Tr1 cells markedly suppressed T-lymphocyte proliferation and the mixed lymphocytic response (MLR) in vitro. The mice used in the allo-HSCT model had longer survival times and lower clinical and pathological GVHD scores than the control mice. Conclusion: IL-10 gene-modified DC-induced Tr1 cells may be used as a potent cellular therapy for the prevention of GVHD after allo-HSCT
    corecore