53 research outputs found

    Candidate for Laser Cooling of a Negative Ion : High-Resolution Photoelectron Imaging of Th

    No full text
    Laser cooling is a well-established technique for the creation of ensembles of ultracold neutral atoms or positive ions. This ability has opened many exciting new research fields over the past 40 years. However, no negatively charged ions have been directly laser cooled because a cycling transition is very rare in atomic anions. Efforts of more than a decade currently have La- as the most promising candidate. We report on experimental and theoretical studies supporting Th- as a new promising candidate for laser cooling. The measured and calculated electron affinities of Th are, respectively, 4901.35(48) cm-1 and 4832 cm-1, or 0.607 690(60) and 0.599 eV, almost a factor of 2 larger than the previous theoretical value of 0.368 eV. The ground state of Th- is determined to be 6d37s2 F43/2e rather than 6d27s27p G45/2o. The consequence of this is that there are several strong electric dipole transitions between the bound levels arising from configurations 6d37s2 and 6d27s27p in Th-. The potential laser-cooling transition is S1/2o2↔F43/2e with a wavelength of 2.6 μm. The zero nuclear spin and hence lack of hyperfine structure in Th- reduces the potential complications in laser cooling as encountered in La-, making Th- a new and exciting candidate for laser cooling

    Observation of electric-dipole transitions in the laser-cooling candidate Th- And its application for cooling antiprotons

    No full text
    Despite the fact that the laser-cooling method is a well-established technique to obtain ultracold neutral atoms and atomic cations, it has rarely if ever been applied to atomic anions due to the lack of suitable electric-dipole transitions. Efforts of more than a decade have until recently only resulted in La- as a promising anion candidate for laser cooling, but our previous work [Tang et al., Phys. Rev. Lett. 123, 203002 (2019)10.1103/PhysRevLett.123.203002] showed that Th- is also a potential candidate. Here we report on a combination of experimental and theoretical studies to determine the frequencies and rates, as well as branching ratios, for the relevant transitions in Th-. The resonant frequency of the laser-cooling transition is determined to be ν=123.455(30) THz [λ=2428.4(6)nm]. The transition rate is calculated as A=1.17×104s-1. Since the branching fraction to dark states is negligible, 1.47×10-10, this represents an ideal closed cycle in Th- for laser cooling. Furthermore, the zero nuclear spin of Th232 makes the cooling process possible in a Penning trap, which can be used to confine both antiprotons and Th- ions. The presented ion dynamics simulations show that the laser-cooled Th- anions can effectively cool antiprotons to a temperature around 10 mK

    Evolution Characterization and Pathogenicity of a Porcine Reproductive and Respiratory Syndrome Virus Isolate from a Pig Farm in Shandong Province, China

    No full text
    In recent years, porcine reproductive and respiratory syndrome virus (PRRSV) strains have been experiencing extensive recombination in Chinese swine farms. This recombination usually happens in NADC30/34 strains and highly pathogenic (HP) PRRSV strains. This study identified a new PRRSV isolate that shared 99% and 99.1% nucleotide identity with CH-1a and CH-1R at the genomic level, respectively. After purification by viral plaque assay, this isolate was named PRRSV CSR1801. The isolate did not experience any recombination with other PRRSV strains common in swine herd epidemics in China, which means it still maintains the stable features of the classical PRRSV strain and did not easily recombine with other PRRSV strains. Further analysis of the pathogenicity of the PRRSV isolate CSR1801 was performed in piglets. The results indicated that none of the inoculated piglets showed the typical clinical manifestations of PRRS, which presented with runny noses, rough back hair, rectal temperatures always below 40.5 °C, and no deaths. Additionally, no obvious histopathological lesions such as severe interstitial pneumonia could be observed in the lungs of the piglets. Hence, the PRRSV isolate CSR1801 should be classified as a classical-like PRRSV strain. This classical PRRSV strain showed genetic stability and maintained low pathogenicity. This study may provide new clues for further understanding the genetic evolution and pathogenicity of PRRSV and may also be an important reference for the prevention and control of PRRS in swine farms

    Comparative analysis of microRNA expression profiles of adult Schistosoma japonicum isolated from water buffalo and yellow cattle

    No full text
    Abstract Background Yellow cattle and water buffalo are important natural reservoir hosts and the main transmission sources of Schistosoma japonicum in endemic areas of China. The worms from the two hosts have marked differences in general worm morphology and ultrastructure, gene transcription and protein expression profiles. Results To investigate microRNAs (miRNAs) involved in the regulation of schistosome development and survival, we compared miRNA expression profiles of adult schistosomes derived from yellow cattle and water buffalo by using high-throughput sequencing with Illumina Hiseq Xten. Schistosoma japonicum from water buffalo and yellow cattle yielded 63.78 million and 63.21 million reads, respectively, of which nearly 50% and 49% could be mapped to selected miRNAs in miRbase. A total of 206 miRNAs were identified, namely 79 previously annotated miRNAs of S. japonicum and 127 miRNAs that matched with the S. japonicum genome and were highly similar to the annotated miRNAs from other organisms. Among the 79 miRNAs, five (sja-miR-124-3p, sja-miR-219-5p, sja-miR-2e-3p, sja-miR-7-3p and sja-miR-3490) were significantly upregulated in the schistosomes from water buffalo compared with those from yellow cattle. A total of 268 potential target genes were predicted for these five differentially expressed miRNAs. Eleven differentially expressed targets were confirmed by qRT-PCR among 15 tested targets, one of which was further validated through dual-luciferase reporter assay. Among the 127 ‘possible’ S. japonicum miRNAs, ten were significantly differentially expressed in the schistosomes from these two hosts. Conclusions These results highlight the important roles of miRNAs in regulating the development and survival of schistosomes in water buffalo and yellow cattle and facilitate understanding of the miRNA regulatory mechanisms in schistosomes derived from different susceptible hosts

    Characterization of VAMP2 in Schistosoma japonicum and the Evaluation of Protective Efficacy Induced by Recombinant SjVAMP2 in Mice.

    No full text
    The outer-tegument membrane covering the schistosome is believed to maintain via the fusion of membranous vesicles. Fusion of biological membranes is a fundamental process in all eukaryotic cells driven by formation of trans-SNARE (soluble N-ethylmaleimide-sensitive factor attachment protein receptor) complexes through pairing of vesicle associated v-SNAREs (VAMP) with complementary t-SNAREs on target membranes. The purpose of this study was to characterize Schistosoma japonicum vesicle-associated membrane protein 2 (SjVAMP2) and to investigate its potential as a candidate vaccine against schistosomiasis.The sequence of SjVAMP2 was analyzed, cloned, expressed and characterized. SjVAMP2 is a member of the synaptobrevin superfamily harboring the v-SNARE coiled-coil homology domain. RT-PCR analysis revealed that significantly higher SjVAMP2 levels were observed in 14-, 28- and 42-day-old worms, and SjVAMP2 expression was much higher in 42-day-old female worms than in those male worms. Additionally, the expression of SjVAMP2 was associated with membrane recovery in PZQ-treated worms. Immunostaining assay showed that SjVAMP2 was mainly distributed in the sub-tegument of the worms. Western blotting revealed that rSjVAMP2 showed strong immunogenicity. Purified rSjVAMP2 emulsified with ISA206 adjuvant induced 41.5% and 27.3% reductions in worm burden, and 36.8% and 23.3% reductions in hepatic eggs in two independent trials. Besides, significantly higher rSjVAMP2-specific IgG, IgG1, IgG2a levels were detected in rSjVAMP2-vaccinated mice.Our study indicated that SjVAMP2 is a potential vaccine candidate against S. japonicum and provided the basis for further investigations into the biological function of SjVAMP2

    Prognostic significance and molecular mechanism of ATP-binding cassette subfamily C member 4 in resistance to neoadjuvant radiotherapy of locally advanced rectal carcinoma.

    Get PDF
    BACKGROUND: Mechanism of radioresistance in rectal carcinoma remains largely unknown. We aimed to evaluate the predictive role of ATP-binding cassette subfamily C member 4 (ABCC4) in locally advanced rectal carcinoma and explore possible molecular mechanisms by which ABCC4 confers the resistance to neoadjuvant radiotherapy. METHODS: The expression of ABCC4 and P53 mutant in biopsy tissue specimens from 121 locally advanced rectal carcinoma patients was examined using immunohistochemistry. The factors contributing to 3-year overall survival and disease-free survival were evaluated using the Kaplan-Meier method and Cox proportional hazard model. Lentivirus-mediated small hairpin RNA was applied to inhibit ABCC4 expression in colorectal carcinoma cell line RKO, and investigate the radiosensitivity in xenograft model. Intracellular cyclic adenosine monophosphate concentration and cell cycle distribution following irradiation were detected. RESULTS: High expression of ABCC4 and p53 mutant in pretreated tumors, poor pathological response, and high final tumor staging were significant factors independently predicted an unfavorable prognosis of locally advanced rectal carcinoma patients after neoadjuvant radiotherapy. Down-regulation of ABCC4 expression significantly enhanced irradiation-induced suppression of tumor growth in xenograft model. Furthermore, down-regulation of ABCC4 expression enhanced intracellular cyclic adenosine monophosphate production and noticeable deficiency of G1-S phase checkpoint in cell cycle following irradiation. CONCLUSIONS: Our study suggests that ABCC4 serves as a novel predictive biomarker that is responsible for the radioresistance and predicts a poor prognosis for locally advanced rectal carcinoma after neoadjuvant radiotherapy

    iTRAQ-Based Comparative Proteomic Analysis of Adult Schistosoma japonicum from Water Buffalo and Yellow Cattle

    No full text
    Schistosomiasis japonicum is one of the most severe zoonotic diseases in China. Water buffalo and yellow cattle are important reservoir hosts and the main transmission sources of Schistosoma japonicum in endemic areas. The susceptibility of these two hosts to schistosome infection is different, as water buffaloes are less susceptible to S. japonicum than yellow cattle. In this study, iTRAQ-coupled LC-MS/MS was applied to compare the protein expression profiles of adult schistosomes recovered from water buffalo with those of yellow cattle. A total of 131 differentially expressed proteins (DEPs) were identified, including 46 upregulated proteins and 85 downregulated proteins. The iTRAQ results were confirmed by Western blotting and quantitative real-time PCR. Further analysis indicated that these DEPs were primarily involved in protein synthesis, transcriptional regulation, protein proteolysis, cytoskeletal structure and oxidative stress response processes. The results revealed that some of the differential expression molecules may affect the development and survival of schistosomes in these two natural hosts. Of note, this study provides useful information for understanding the interplay between schistosomes and their final hosts
    • …
    corecore