9,791 research outputs found
On the magnitude of a finite dimensional algebra
There is a general notion of the magnitude of an enriched category, defined subject to hypotheses. In topological and geometric contexts, magnitude is already known to be closely related to classical invariants such as Euler characteristic and dimension. Here we establish its significance in an algebraic context. Specifically, in the representation theory of an associative algebra , a central role is played by the indecomposable projective -modules, which form a category enriched in vector spaces. We show that the magnitude of that category is a known homological invariant of the algebra: writing for the Euler form of and for the direct sum of the simple -modules, it is
Direct vs. indirect optical recombination in Ge films grown on Si substrates
The optical emission spectra from Ge films on Si are markedly different from
their bulk Ge counterparts. Whereas bulk Ge emission is dominated by the
material's indirect gap, the photoluminescence signal from Ge films is mainly
associated with its direct band gap. Using a new class of Ge-on-Si films grown
by a recently introduced CVD approach, we study the direct and indirect
photoluminescence from intrinsic and doped samples and we conclude that the
origin of the discrepancy is the lack of self-absorption in thin Ge films
combined with a deviation from quasi-equilibrium conditions in the conduction
band. The latter is confirmed by a simple model suggesting that the deviation
from quasi-equilibrium is caused by the much shorter recombination lifetime in
the films relative to bulk Ge
Where are the Hedgehogs in Nematics?
In experiments which take a liquid crystal rapidly from the isotropic to the
nematic phase, a dense tangle of defects is formed. In nematics, there are in
principle both line and point defects (``hedgehogs''), but no point defects are
observed until the defect network has coarsened appreciably. In this letter the
expected density of point defects is shown to be extremely low, approximately
per initially correlated domain, as result of the topology
(specifically, the homology) of the order parameter space.Comment: 6 pages, latex, 1 figure (self-unpacking PostScript)
Cryogenic-coolant He4-superconductor dynamic and static interactions
A composite superconducting material (NbTi-Cu) was evaluated with emphasis on post quench solid cooling interaction regimes. The quasi-steady runs confirm the existence of a thermodynamic limiting thickness for insulating coatings. Two distinctly different post quench regimes of coated composites are shown to relate to the limiting thickness. Only one regime,, from quench onset to the peak value, revealed favorable coolant states, in particular in He2. Transient recovery shows favorable recovery times from this post quench regime (not drastically different from bare conductors) for both single coated specimens and a coated conductor bundle
Quantum Bit Regeneration
Decoherence and loss will limit the practicality of quantum cryptography and
computing unless successful error correction techniques are developed. To this
end, we have discovered a new scheme for perfectly detecting and rejecting the
error caused by loss (amplitude damping to a reservoir at T=0), based on using
a dual-rail representation of a quantum bit. This is possible because (1)
balanced loss does not perform a ``which-path'' measurement in an
interferometer, and (2) balanced quantum nondemolition measurement of the
``total'' photon number can be used to detect loss-induced quantum jumps
without disturbing the quantum coherence essential to the quantum bit. Our
results are immediately applicable to optical quantum computers using single
photonics devices.Comment: 4 pages, postscript only, figures available at
http://feynman.stanford.edu/qcom
Geometric quantum computation using fictitious spin- 1/2 subspaces of strongly dipolar coupled nuclear spins
Geometric phases have been used in NMR, to implement controlled phase shift
gates for quantum information processing, only in weakly coupled systems in
which the individual spins can be identified as qubits. In this work, we
implement controlled phase shift gates in strongly coupled systems, by using
non-adiabatic geometric phases, obtained by evolving the magnetization of
fictitious spin-1/2 subspaces, over a closed loop on the Bloch sphere. The
dynamical phase accumulated during the evolution of the subspaces, is refocused
by a spin echo pulse sequence and by setting the delay of transition selective
pulses such that the evolution under the homonuclear coupling makes a complete
rotation. A detailed theoretical explanation of non-adiabatic geometric
phases in NMR is given, by using single transition operators. Controlled phase
shift gates, two qubit Deutsch-Jozsa algorithm and parity algorithm in a
qubit-qutrit system have been implemented in various strongly dipolar coupled
systems obtained by orienting the molecules in liquid crystal media.Comment: 37 pages, 17 figure
Carrier dynamics and coherent acoustic phonons in nitride heterostructures
We model generation and propagation of coherent acoustic phonons in
piezoelectric InGaN/GaN multi-quantum wells embedded in a \textit{pin} diode
structure and compute the time resolved reflectivity signal in simulated
pump-probe experiments. Carriers are created in the InGaN wells by ultrafast
pumping below the GaN band gap and the dynamics of the photoexcited carriers is
treated in a Boltzmann equation framework. Coherent acoustic phonons are
generated in the quantum well via both deformation potential electron-phonon
and piezoelectric electron-phonon interaction with photogenerated carriers,
with the latter mechanism being the dominant one. Coherent longitudinal
acoustic phonons propagate into the structure at the sound speed modifying the
optical properties and giving rise to a giant oscillatory differential
reflectivity signal. We demonstrate that coherent optical control of the
differential reflectivity can be achieved using a delayed control pulse.Comment: 14 pages, 11 figure
Doubling of the bands in overdoped Bi2Sr2CaCu2O8-probable evidence for c-axis bilayer coupling
We present high resolution ARPES data of the bilayer superconductor
Bi2Sr2CaCu2O8 (Bi2212) showing a clear doubling of the near EF bands. This
splitting approaches zero along the (0,0)-(pi,pi) nodal line and is not
observed in single layer Bi2Sr2CuO6 (Bi2201), suggesting that the splitting is
due to the long sought after bilayer splitting effect. The splitting has a
magnitude of approximately 75 meV near the middle of the zone, extrapolating to
about 100 meV near the (pi,0) poin
- …