599 research outputs found
Incidence and recurrence of acute otitis media in Taiwan's pediatric population
OBJECTIVE: To report the incidence and recurrence of acute otitis media (AOM) in Taiwan's pediatric population. METHODS: Information from children (aged <= 12 years) with a diagnosis of AOM was retrieved from the 2006 National Healthcare Insurance claims database. We calculated the cumulative incidence rate and the incidence density rate of recurrent AOM within one year after the initial diagnosis in 2006. We used a multivariate logistic regression model to assess the predictors for recurrence of AOM. RESULTS: The annual incidence rate of AOM was estimated to be 64.5 cases per 1,000 children. The overall one-year cumulative incidence rate of recurrence was 33.1%, and the incidence density rate was 33.5 cases per 100 personyears, with the highest figure (41.2 cases per 100 person-years) noted for children aged 0-2 years. Recurrence was significantly associated with age, gender, place of treatment, and physician specialty. CONCLUSION: AOM remains a major threat to children's health in Taiwan. Male children and very young children require more aggressive preventive strategies to reduce the risk of recurrence
Molecular Level Characterization of Diatom-Associated Biopolymers that Bind 234Th, ²³³PA, ²š°Pb, and 7Be in Seawater: A Case Study With Phaeodactylum tricornutum
In order to investigate the importance of biogenic silica associated biopolymers on the scavenging of radionuclides, the diatom Phaeodactylum tricornutum was incubated together with the radionuclides Th-234, Pa-233, Pb-210, and Be-7 during their growth phase. Normalized affinity coefficients were determined for the radionuclides bound with different organic compound classes (i.e., proteins, total carbohydrates, uronic acids) in extracellular (nonattached and attached exopolymeric substances), intracellular (ethylene diamine tetraacetic acid and sodium dodecyl sulfate extractable), and frustule embedded biopolymeric fractions (BF). Results indicated that radionuclides were mostly concentrated in frustule BF. Among three measured organic components, Uronic acids showed the strongest affinities to all tested radionuclides. Confirmed by spectrophotometry and two-dimensional heteronuclear single quantum coherence-nuclear magnetic resonance analyses, the frustule BF were mainly composed of carboxyl-rich, aliphatic-phosphoproteins, which were likely responsible for the strong binding of many of the radionuclides. Results from this study provide evidence for selective absorption of radionuclides with different kinds of diatom-associated biopolymers acting in concert rather than as a single compound. This clearly indicates the importance of these diatom-related biopolymers, especially frustule biopolymers, in the scavenging and fractionation of radionuclides used as particle tracers in the ocean
Cryopreservation of Orchid Genetic Resources by Desiccation: A Case Study of Bletilla formosana
Many native orchid populations declined yearly due to economic development and climate change. This resulted in some wild orchids being threatened. In order to maintain the orchid genetic resources, development of proper methods for the longâterm preservation is urgent. Low temperature or dry storage methods for the preservation of orchid genetic resources have been implemented but are not effective in maintaining high viability of certain orchids for long periods. Cryopreservation is one of the most acceptable methods for longâterm conservation of plant germplasm. Orchid seeds and pollens are ideal materials for longâterm preservation (seed banking) in liquid nitrogen (LN) as the seeds and pollens are minute, enabling the storage of many hundreds of thousands of seeds or pollens in a small vial, and as most species germinate readily, making the technique very economical. This article describes cryopreservation of orchid genetic resources by desiccation and a case study of Bletilla formosana. We hope to provide a more practical potential cryopreservation method for future research needs
Serum total antioxidant capacity reflects severity of illness in patients with severe sepsis
INTRODUCTION: We conducted the present study to evaluate the changes in serum total antioxidant capacity (TAC) in patients with severe sepsis and to investigate the association between serum TAC and clinical severity. METHOD: This was a prospective observational study involving a sample of patients who met established criteria for severe sepsis and were admitted to the emergency department of a university teaching hospital. Serum TAC was determined using the total radical-trapping antioxidant parameter method. The levels of TAC, uric acid, albumin, and bilirubin in sera were obtained in the emergency department and evaluated to determine whether there were any correlations between the major antioxidant biomarkers and clinical severity of sepsis. The Acute Physiology and Chronic Health Evaluation (APACHE) II score was used for clinical evaluation of the severity of sepsis. RESULTS: A total of 73 patients with sepsis, with a mean (Âą standard deviation) APACHE II score of 23.2 Âą 8.2 and a mortality rate of 26.0%, were included. Seventy-six healthy individuals served as control individuals. Among the patients, serum TAC levels correlated significantly with APACHE II scores. Patients who died also had higher TAC than did those who survived. Serum uric acid levels correlated significantly with serum TAC and APACHE II scores in patients with severe sepsis. CONCLUSION: Elevated serum TAC level may reflect clinical severity of sepsis. In addition, serum uric acid levels appear to contribute importantly to the higher TAC levels observed in patients with severe sepsis
Use of a leaf chlorophyll content index to improve the prediction of above-ground biomass and productivity
Improving the accuracy of predicting plant productivity is a key element in planning nutrient management strategies to ensure a balance between nutrient supply and demand under climate change. A calculation based on intercepted photosynthetically active radiation is an effective and relatively reliable way to determine the climate impact on a crop above-ground biomass (AGB). This research shows that using variations in a chlorophyll content index (CCI) in a mathematical function could effectively obtain good statistical diagnostic results between simulated and observed crop biomass. In this study, the leaf CCI, which is used as a biochemical photosynthetic component and calibration parameter, increased simulation accuracy across the growing stages during 2016â2017. This calculation improves the accuracy of prediction and modelling of crops under specific agroecosystems, and it may also improve projections of AGB for a variety of other crops
Experimentally obtaining the Likeness of Two Unknown Quantum States on an NMR Quantum Information Processor
Recently quantum states discrimination has been frequently studied. In this
paper we study them from the other way round, the likeness of two quantum
states. The fidelity is used to describe the likeness of two quantum states.
Then we presented a scheme to obtain the fidelity of two unknown qubits
directly from the integral area of the spectra of the assistant qubit(spin) on
an NMR Quantum Information Processor. Finally we demonstrated the scheme on a
three-qubit quantum information processor. The experimental data are consistent
with the theoretical expectation with an average error of 0.05, which confirms
the scheme.Comment: 3 pages, 4 figure
2-O-Methylmagnolol Induces Apoptosis and Inhibits IL-6/STAT3 Signaling in Oral Squamous Cell Carcinoma
Background/Aims: 2-O-methylmagnolol (MM1), a derivative of magnolol bearing one methoxy moiety, has been shown to display improved anti-tumor activity against skin cancers. In this study, we examined the anti-tumor effects of magnolol and MM1 on oral squamous cell carcinoma (OSCC). Methods: Trypane blue staining and clonogenic assays were performed to determine the cytotoxic effects of magnolol and MM1 in OSCC cells. Migration and matrigel invasion assays were carried out to examine the metastasis effects of magnolol and MM1 in OSCC cells. IL6-stimulation, Western blot, and immunohistochemistry were used to investigate the IL-6/STAT3 signaling and apoptosis. A bioluminescent mouse model of orthotopically implanted SAS cells was used to determine the anti-tumor activity of MM1 in vivo. Results: MM1 displays greater activity than magnolol on affecting the cytotoxicity, migration, and invasion of OSCC cells cultured in vitro. The improved anti-tumor activity of MM1 was shown to associate with its greater activity to inhibit STAT3 signaling and to induce apoptosis in the OSCC. In addition, we presented evidence that MM1 is effective in inhibiting the growth of orthotopic implanted OSCC cells in vivo. Conclusion: Our data indicate that MM1 displays greater anti-tumor activity than magnolol in OSCC and is an attractive agent to be further explored for its potential clinical application
- âŚ