75 research outputs found
Fast Quantum Search Algorithms in Protein Sequence Comparison - Quantum Biocomputing
Quantum search algorithms are considered in the context of protein sequence
comparison in biocomputing. Given a sample protein sequence of length m (i.e m
residues), the problem considered is to find an optimal match in a large
database containing N residues. Initially, Grover's quantum search algorithm is
applied to a simple illustrative case - namely where the database forms a
complete set of states over the 2^m basis states of a m qubit register, and
thus is known to contain the exact sequence of interest. This example
demonstrates explicitly the typical O(sqrt{N}) speedup on the classical O(N)
requirements. An algorithm is then presented for the (more realistic) case
where the database may contain repeat sequences, and may not necessarily
contain an exact match to the sample sequence. In terms of minimizing the
Hamming distance between the sample sequence and the database subsequences the
algorithm finds an optimal alignment, in O(sqrt{N}) steps, by employing an
extension of Grover's algorithm, due to Boyer, Brassard, Hoyer and Tapp for the
case when the number of matches is not a priori known.Comment: LaTeX, 5 page
Solid-State Nuclear Spin Quantum Computer Based on Magnetic Resonance Force Microscopy
We propose a nuclear spin quantum computer based on magnetic resonance force
microscopy (MRFM). It is shown that an MRFM single-electron spin measurement
provides three essential requirements for quantum computation in solids: (a)
preparation of the ground state, (b) one- and two- qubit quantum logic gates,
and (c) a measurement of the final state. The proposed quantum computer can
operate at temperatures up to 1K.Comment: 16 pages, 5 figure
An NMR-based nanostructure switch for quantum logic
We propose a nanostructure switch based on nuclear magnetic resonance (NMR)
which offers reliable quantum gate operation, an essential ingredient for
building a quantum computer. The nuclear resonance is controlled by the magic
number transitions of a few-electron quantum dot in an external magnetic field.Comment: 4 pages, 2 separate PostScript figures. Minor changes included. One
reference adde
Use of Quadrupolar Nuclei for Quantum Information processing by Nuclear Magnetic Resonance: Implementation of a Quantum Algorithm
Physical implementation of Quantum Information Processing (QIP) by
liquid-state Nuclear Magnetic Resonance (NMR), using weakly coupled spin-1/2
nuclei of a molecule, is well established. Nuclei with spin1/2 oriented in
liquid crystalline matrices is another possibility. Such systems have multiple
qubits per nuclei and large quadrupolar couplings resulting in well separated
lines in the spectrum. So far, creation of pseudopure states and logic gates
have been demonstrated in such systems using transition selective
radio-frequency pulses. In this paper we report two novel developments. First,
we implement a quantum algorithm which needs coherent superposition of states.
Second, we use evolution under quadrupolar coupling to implement multi qubit
gates. We implement Deutsch-Jozsa algorithm on a spin-3/2 (2 qubit) system. The
controlled-not operation needed to implement this algorithm has been
implemented here by evolution under the quadrupolar Hamiltonian. This method
has been implemented for the first time in quadrupolar systems. Since the
quadrupolar coupling is several orders of magnitude greater than the coupling
in weakly coupled spin-1/2 nuclei, the gate time decreases, increasing the
clock speed of the quantum computer.Comment: 16 pages, 3 figure
Quantum phase gate with a selective interaction
We present a proposal for implementing quantum phase gates using selective
interactions. We analize selectivity and the possibility to implement these
gates in two particular systems, namely, trapped ions and Cavity QED.Comment: Four pages of TEX file and two EPS figures. Submitted for publicatio
Anomalous Dynamics of Forced Translocation
We consider the passage of long polymers of length N through a hole in a
membrane. If the process is slow, it is in principle possible to focus on the
dynamics of the number of monomers s on one side of the membrane, assuming that
the two segments are in equilibrium. The dynamics of s(t) in such a limit would
be diffusive, with a mean translocation time scaling as N^2 in the absence of a
force, and proportional to N when a force is applied. We demonstrate that the
assumption of equilibrium must break down for sufficiently long polymers (more
easily when forced), and provide lower bounds for the translocation time by
comparison to unimpeded motion of the polymer. These lower bounds exceed the
time scales calculated on the basis of equilibrium, and point to anomalous
(sub-diffusive) character of translocation dynamics. This is explicitly
verified by numerical simulations of the unforced translocation of a
self-avoiding polymer. Forced translocation times are shown to strongly depend
on the method by which the force is applied. In particular, pulling the polymer
by the end leads to much longer times than when a chemical potential difference
is applied across the membrane. The bounds in these cases grow as N^2 and
N^{1+\nu}, respectively, where \nu is the exponent that relates the scaling of
the radius of gyration to N. Our simulations demonstrate that the actual
translocation times scale in the same manner as the bounds, although influenced
by strong finite size effects which persist even for the longest polymers that
we considered (N=512).Comment: 13 pages, RevTeX4, 16 eps figure
Dynamics of entanglement for coherent excitonic states in a system of two coupled quantum dots and cavity QED
The dynamics of the entanglement for coherent excitonic states in the system
of two coupled large semiconductor quantum dots () mediated by a
single-mode cavity field is investigated. Maximally entangled coherent
excitonic states can be generated by cavity field initially prepared in odd
coherent state. The entanglement of the excitonic coherent states between two
dots reaches maximum when no photon is detected in the cavity. The effects of
the zero-temperature environment on the entanglement of excitonic coherent
state are also studied using the concurrence for two subsystems of the excitonsComment: 7 pages, 6 figure
A switchable controlled-NOT gate in a spin-chain NMR quantum computer
A method of switching a controlled-NOT gate in a solid-stae NMR quantum
computer is presented. Qubits of I=1/2 nuclear spins are placed periodically
along a quantum spin chain (1-D antiferromagnet) having a singlet ground state
with a finite spin gap to the lowest excited state caused by some quantum
effect. Irradiation of a microwave tuned to the spin gap energy excites a
packet of triplet magnons at a specific part of the chain where control and
target qubits are involved. The packet switches on the Suhl-Nakamura
interaction between the qubits, which serves as a controlled NOT gate. The
qubit initialization is achieved by a qubit initializer consisting of
semiconducting sheets attached to the spin chain, where spin polarizations
created by the optical pumping method in the semiconductors are transferred to
the spin chain. The scheme allows us to separate the initialization process
from the computation, so that one can optimize the computation part without
being restricted by the initialization scheme, which provides us with a wide
selection of materials for a quantum computer.Comment: 8 pages, 5 figure
Protons in near earth orbit
The proton spectrum in the kinetic energy range 0.1 to 200 GeV was measured
by the Alpha Magnetic Spectrometer (AMS) during space shuttle flight STS-91 at
an altitude of 380 km. Above the geomagnetic cutoff the observed spectrum is
parameterized by a power law. Below the geomagnetic cutoff a substantial second
spectrum was observed concentrated at equatorial latitudes with a flux ~ 70
m^-2 sec^-1 sr^-1. Most of these second spectrum protons follow a complicated
trajectory and originate from a restricted geographic region.Comment: 19 pages, Latex, 7 .eps figure
Search for antihelium in cosmic rays
The Alpha Magnetic Spectrometer (AMS) was flown on the space shuttle
Discovery during flight STS-91 in a 51.7 degree orbit at altitudes between 320
and 390 km. A total of 2.86 * 10^6 helium nuclei were observed in the rigidity
range 1 to 140 GV. No antihelium nuclei were detected at any rigidity. An upper
limit on the flux ratio of antihelium to helium of < 1.1 * 10^-6 is obtained.Comment: 18 pages, Latex, 9 .eps figure
- …