1,259 research outputs found
I=2 Pion scattering length with improved actions on anisotropic lattices
scattering length in the I=2 channel is calculated within quenched
approximation using improved gauge and improved Wilson fermion actions on
anisotropic lattices. The results are extrapolated towards the chiral, infinite
volume and continuum limit. This result improves our previous result on the
scattering length. In the chiral, infinite volume and continuum limit, we
obtain , which is consistent with the result from
Chiral Perturbation Theory, the experiment and results from other lattice
calculations.Comment: 7 pages, 2 figures, typeset wit elsart.cl
The Friedmann equation in modified entropy-area relation from entropy force
According to the formal holographic principle, a modification to the
assumption of holographic principle in Verlinder's investigation of entropy
force is obtained. A more precise relation between entropy and area in the
holographic system is proposed. With the entropy corrections to the
area-relation, we derivate Newton's laws and Einstein equation with a static
spherically symmetric holographic screen. Furthermore we derived the correction
terms to the modified Friedmann equation of the FRW universe starting from the
holographic principle and the Debye model.Comment: Mod. Phys. Lett. A26, 489-500 (2011
Quenched Charmed Meson Spectra using Tadpole Improved Quark Action on Anisotropic Lattices
Charmed meson charmonium spectra are studied with improved quark actions on
anisotropic lattices. We measured the pseudo-scalar and vector meson dispersion
relations for 4 lowest lattice momentum modes with quark mass values ranging
from the strange quark to charm quark with 3 different values of gauge coupling
and 4 different values of bare speed of light . With the bare
speed of light parameter tuned in a mass-dependent way, we study the mass
spectra of , , ,
, and mesons.
The results extrapolated to the continuum limit are compared with the
experiment and qualitative agreement is found.Comment: 8 pages, 2 figures, latex fil
Entanglement and quantum phase transition in alternating XY spin chain with next-nearest neighbour interactions
By using the method of density-matrix renormalization-group to solve the
different spin-spin correlation functions, the nearest-neighbouring
entanglement(NNE) and next-nearest-neighbouring entanglement(NNNE) of
one-dimensional alternating Heisenberg XY spin chain is investigated in the
presence of alternating nearest neighbour interactions of exchange couplings,
external magnetic fields and next-nearest neighbouring interactions. For
dimerized ferromagnetic spin chain, NNNE appears only above the critical
dimerized interaction, meanwhile, the dimerized interaction effects quantum
phase transition point and improves NNNE to a large value. We also study the
effect of ferromagnetic or antiferromagnetic next-nearest neighboring (NNN)
interactions on the dynamics of NNE and NNNE. The ferromagnetic NNN interaction
increases and shrinks NNE below and above critical frustrated interaction
respectively, while the antiferromagnetic NNN interaction always decreases NNE.
The antiferromagnetic NNN interaction results to a larger value of NNNE in
comparison to the case when the NNN interaction is ferromagnetic.Comment: 13 pages, 4 figures,. accepted by Chinese Physics B 2008 11 (in
press
Representation and measurement of the beam health based on one-dimensional model
This paper proposes a method for online structural health evaluation, and analyzes the correlation between online monitoring data and structural health status. On the basis of this analysis, the structural health can be evaluated by using the deviation of the current status from the initially designed status. The health degree index, representation and measurement models are also defined for structural health evaluation in this work. A numerical case study is conducted to validate the related concept and health evaluation model using a beam under pressure loads. The results indicate that the proposed method can effectively represent the structural health status
Precise Measurement of Gravity Variations During a Total Solar Eclipse
The variations of gravity were measured with a high precision LaCoste-Romberg
D gravimeter during a total solar eclipse to investigate the effect of solar
eclipse on the gravitational field. The observed anomaly m/s during the eclipse implies that there may be a shielding
property of gravitation
The entanglement in one-dimensional random XY spin chain with Dzyaloshinskii-Moriya interaction
The impurities of exchange couplings, external magnetic fields and
Dzyaloshinskii--Moriya (DM) interaction considered as Gaussian distribution,
the entanglement in one-dimensional random spin systems is investigated by
the method of solving the different spin-spin correlation functions and the
average magnetization per spin. The entanglement dynamics at central locations
of ferromagnetic and antiferromagnetic chains have been studied by varying the
three impurities and the strength of DM interaction. (i) For ferromagnetic spin
chain, the weak DM interaction can improve the amount of entanglement to a
large value, and the impurities have the opposite effect on the entanglement
below and above critical DM interaction. (ii) For antiferromagnetic spin chain,
DM interaction can enhance the entanglement to a steady value. Our results
imply that DM interaction strength, the impurity and exchange couplings (or
magnetic field) play competing roles in enhancing quantum entanglement.Comment: 12 pages, 3 figure
Structural phase transition and ferromagnetism in monodisperse 3 nm FePt particles
FePt nanoparticles with a size of 3 nm and thermally stable room-temperature ferromagnetism are investigated. The monodisperse nanoparticles were prepared by chemical synthesis and a salt-matrix annealing technique. Structural and magnetic characterizations confirmed the phase transition from the disordered face-centered cubic structure to the L10 structure with the chemical ordering parameter of 0.62±0.05. Analysis in blocking temperature and fitting of temperature dependence of switching field reveals that the transformed 3 nm nanoparticles have a magnetic anisotropy constant of (2.8±0.2) x 106 J/m3, smaller than those for the bigger particles and the fully ordered L10 bulk phase
Representation and measurement of the beam health based on one-dimensional model
This paper proposes a method for online structural health evaluation, and analyzes the correlation between online monitoring data and structural health status. On the basis of this analysis, the structural health can be evaluated by using the deviation of the current status from the initially designed status. The health degree index, representation and measurement models are also defined for structural health evaluation in this work. A numerical case study is conducted to validate the related concept and health evaluation model using a beam under pressure loads. The results indicate that the proposed method can effectively represent the structural health status
- …