7 research outputs found

    Not Available

    No full text
    Not AvailableThe beneficial microbes plays an important role in medical, industrial, and agricultural processes. The precious microbes belong to different groups including archaea, bacteria, and fungi which can be sort out from different habitat such as extreme environments (acidic, alkaline, drought, pressure, salinity, and temperatures) and associated with plants (epiphytic, endophytic, and rhizospheric) and human. The beneficial microbes exhibited multifunctional plant growth promoting (PGP) attributes such as N 2-fixation, solubilization of micronutrients (phosphorus, potassium and zinc), and production of siderophores, antagonistic substances, antibiotic, auxin, and gibberellins. These microbes could be applied as biofertilizers for native as well as crops growing at diverse extreme habitat. Microbes with PGP attributes of N 2-fixation, P-, and K-solubilization could be used at a place of NPK chemical fertilizers. Agriculturally, important microbes with Fe-and Zn-solubilizing attributes can be used for biofortification of micronutrients in different cereal crops. The biofertilizers are an eco-friendly technology and bioresources for sustainable agriculture and human health. In general, the concentrations of micronutrient in different crops are not adequate for human nutrition in diets. Hence, consumption of such cereal-based diet may result in micronutrient malnutrition and related severe health complications. The biofortification approach is getting much attention to increase the availability of micronutrients, especially Fe and Zn in the major food crops. The beneficial microbes can be used as probiotic as functional foods for human health. Probiotics microbes such as Bifidobacterium, Lactobacillus, Methanobrevibacter, Methanosphaera, and Saccharomyces are increasingly being used as dietary supplements in functional food products. The microbes with beneficial properties could be utilized for sustainable agriculture and human health.Not Availabl

    Effect of cationic and anionic surfactants on the application of calcium carbonate nanoparticles in paper coating

    No full text
    Modification of calcium carbonate particles with surfactant significantly improves the properties of the calcium carbonate coating on paper. In this study, unmodified and CTAB (hexadecyltetramethylammonium bromide)- and oleate-modified calcium carbonate nanoparticles were prepared using the wet carbonation technique for paper coating. CTAB (cationic surfactant) and sodium oleate (anionic surfactant) were used to modify the size, morphology, and surface properties of the precipitated nanoparticles. The obtained particles were characterized using X-ray diffraction (XRD), Fourier transform infrared (FT-IR) spectroscopy, zeta potential measurements, thermal gravimetric analysis (TGA), and transmission electron microscopy (TEM). Coating colors were formulated from the prepared unmodified and modified calcium carbonates and examined by creating a thin coating layer on reference paper. The effect of calcium carbonate particle size and surface modification on paper properties, such as coating thickness, coating weight, surface roughness, air permeability, brightness, whiteness, opacity, and hydrophobicity, were investigated and compared with commercial ground (GCC) calcium carbonate-coated papers. The results show that the obtained calcium carbonate nanoparticles are in the calcite phase. The morphology of the prepared calcium carbonate nanoparticles is rhombohedral, and the average particle diameter is less than 100 nm. Compared to commercial GCC, the use of unmodified and CTAB- and oleate-modified calcium carbonate nanoparticles in paper coating improves the properties of paper. The highest measured paper properties were observed for paper coated with oleate-modifed nanoparticles, where an increase in smoothness (decrease in paper roughness) (+23%), brightness (+1.3%), whiteness (+2.8%), and opacity (+2.3%) and a decrease in air permeability (-26%) was obtained with 25% less coat weight. The water contact angle at a drop age time of 10 min was about 112 for the paper coated with oleate-modified nanoparticles and 42 for paper coated with CTAB-modified nanoparticles compared to 104 for GCC-coated paper. © 2014 American Chemical Society.SCOPUS: ar.jSCOPUS: ar.jinfo:eu-repo/semantics/publishe
    corecore