6,881 research outputs found

    Evidence That The Common Stock Market Adjusts Fully For Expected Inflation

    Full text link
    Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/108367/1/jfir00022.pd

    Efficient Portfolios Versus Efficient Market

    Full text link
    Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/108275/1/jfir00282.pd

    Memory difference control of unknown unstable fixed points: Drifting parameter conditions and delayed measurement

    Full text link
    Difference control schemes for controlling unstable fixed points become important if the exact position of the fixed point is unavailable or moving due to drifting parameters. We propose a memory difference control method for stabilization of a priori unknown unstable fixed points by introducing a memory term. If the amplitude of the control applied in the previous time step is added to the present control signal, fixed points with arbitrary Lyapunov numbers can be controlled. This method is also extended to compensate arbitrary time steps of measurement delay. We show that our method stabilizes orbits of the Chua circuit where ordinary difference control fails.Comment: 5 pages, 8 figures. See also chao-dyn/9810029 (Phys. Rev. E 70, 056225) and nlin.CD/0204031 (Phys. Rev. E 70, 046205

    InGaN nano-ring structures for high-efficiency light emitting diodes

    Get PDF
    A technique based on the Fresnel diffraction effect for the fabrication of nano-scale site-controlled ring structures in InGaN/GaN multi-quantum well structures has been demonstrated. The ring structures have an internal diameter of 500 nm and a wall width of 300 nm. A 1 cm-1 Raman shift has been measured, signifying substantial strain relaxation from the fabricated structure. The 9 nm blueshift observed in the cathodoluminescence spectra can be attributed to band filling and/or screening of the piezoelectric field. A light emitting diode based on this geometry has been demonstrated

    Evidence for Factorization in Three-body B --> D(*) K- K0 Decays

    Full text link
    Motivated by recent experimental results, we use a factorization approach to study the three-body B --> D(*) K- K0 decay modes. Two mechanisms are proposed for kaon pair production: current-produced (from vacuum) and transition (from B meson). The Bbar0 --> D(*)+ K- K0 decay is governed solely by the current-produced mechanism. As the kaon pair can be produced only by the vector current, the matrix element can be extracted from e+ e- --> K Kbar processes via isospin relations. The decay rates obtained this way are in good agreement with experiment. Both current-produced and transition processes contribute to B- --> D(*)0 K- K0 decays. By using QCD counting rules and the measured B- --> D(*)0 K- K0 decay rates, the measured decay spectra can be understood.Comment: 17 pages, 6 figure

    Seasonal and spatial dynamics of the primary vector of plasmodium knowlesi within a major transmission focus in Sabah, Malaysia

    Get PDF
    Background The simian malaria parasite Plasmodium knowlesi is emerging as a public health problem in Southeast Asia, particularly in Malaysian Borneo where it now accounts for the greatest burden of malaria cases and deaths. Control is hindered by limited understanding of the ecology of potential vector species. Methodology/Principal Findings We conducted a one year longitudinal study of P. knowlesi vectors in three sites within an endemic area of Sabah, Malaysia. All mosquitoes were captured using human landing catch. Anopheles mosquitoes were dissected to determine, oocyst, sporozoites and parous rate. Anopheles balabacensis is confirmed as the primary vector of. P. knowlesi (using nested PCR) in Sabah for the first time. Vector densities were significantly higher and more seasonally variable in the village than forest or small scale farming site. However An. balabacensis survival and P. knowlesi infection rates were highest in forest and small scale farm sites. Anopheles balabacensis mostly bites humans outdoors in the early evening between 1800 to 2000hrs. Conclusions/Significance This study indicates transmission is unlikely to be prevented by bednets. This combined with its high vectorial capacity poses a threat to malaria elimination programmes within the region. Author Summary The first natural infection of Plasmodium knowlesi was reported 40 years ago. At that time it was perceived that the infection would not affect humans. However, now P. knowlesi is the predominant malaria species (38% of the cases) infecting people in Malaysia and is a notable obstacle to malaria elimination in the country. Plasmodium knowlesi has also been reported from all countries in Southeast Asia with the exception of Lao PDR and Timor Leste. In Sabah, Malaysian Borneo cases of human P. knowlesi are increasing. Thus, a comprehensive understanding of the bionomics of the vectors is required so as to enable proper control strategies. Here, we conducted a longitudinal study in Kudat district, Sabah, to determine and characterize the vectors of P. knowlesi within this transmission foci. Anopheles balabacensis was the predominant mosquito in all study sites and is confirmed as vector for P. knowlesi and other simian malaria parasites. The peak biting time was in the early part of the evening between1800 to 2000. Thus, breaking the chain of transmission is an extremely challenging task for the malaria elimination programme

    Structural Characterization of Rapid Thermal Oxidized Si\u3csub\u3e1−x−y\u3c/sub\u3eGe\u3csub\u3ex\u3c/sub\u3eC\u3csub\u3ey\u3c/sub\u3e Alloy Films Grown by Rapid Thermal Chemical Vapor Deposition

    Get PDF
    The structural properties of as-grown and rapid thermal oxidized Si1−x−yGexCy epitaxial layers have been examined using a combination of infrared, x-ray photoelectron, x-ray diffraction, secondary ion mass spectroscopy, and Raman spectroscopy techniques. Carbon incorporation into the Si1−x−yGexCy system can lead to compressive or tensile strain in the film. The structural properties of the oxidized Si1−x−yGexCy film depend on the type of strain (i.e., carbon concentration) of the as-prepared film. For compressive or fully compensated films, the oxidation process drastically reduces the carbon content so that the oxidized films closely resemble to Si1−xGex films. For tensile films, two broad regions, one with carbon content higher and the other lower than that required for full strain compensation, coexist in the oxidized films

    Low-Mass Baryon-Antibaryon Enhancements in B Decays

    Full text link
    The nature of low-mass baryon-antibaryon enhancements seen in B decays is explored. Three possibilities include (i) states near threshold as found in a model by Nambu and Jona-Lasinio, (ii) isoscalar states with JPC=0±+J^{PC} = 0^{\pm +} coupled to a pair of gluons, and (iii) low-mass enhancements favored by the fragmentation process. Ways of distinguishing these mechanisms using angular distributions and flavor symmetry are proposed.Comment: 8 pages, LaTeX, no figures, to be submitted to Phys. Rev. D. One reference adde

    Improving Run Time in Three-Dimensional Reservoir Hydrodynamics and Water Quality Modeling

    Get PDF
    Source: ICHE Conference Archive - https://mdi-de.baw.de/icheArchiv
    corecore