6,881 research outputs found
Evidence That The Common Stock Market Adjusts Fully For Expected Inflation
Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/108367/1/jfir00022.pd
Efficient Portfolios Versus Efficient Market
Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/108275/1/jfir00282.pd
Memory difference control of unknown unstable fixed points: Drifting parameter conditions and delayed measurement
Difference control schemes for controlling unstable fixed points become
important if the exact position of the fixed point is unavailable or moving due
to drifting parameters. We propose a memory difference control method for
stabilization of a priori unknown unstable fixed points by introducing a memory
term. If the amplitude of the control applied in the previous time step is
added to the present control signal, fixed points with arbitrary Lyapunov
numbers can be controlled. This method is also extended to compensate arbitrary
time steps of measurement delay. We show that our method stabilizes orbits of
the Chua circuit where ordinary difference control fails.Comment: 5 pages, 8 figures. See also chao-dyn/9810029 (Phys. Rev. E 70,
056225) and nlin.CD/0204031 (Phys. Rev. E 70, 046205
InGaN nano-ring structures for high-efficiency light emitting diodes
A technique based on the Fresnel diffraction effect for the fabrication of nano-scale site-controlled ring structures in InGaN/GaN multi-quantum well structures has been demonstrated. The ring structures have an internal diameter of 500 nm and a wall width of 300 nm. A 1 cm-1 Raman shift has been measured, signifying substantial strain relaxation from the fabricated structure. The 9 nm blueshift observed in the cathodoluminescence spectra can be attributed to band filling and/or screening of the piezoelectric field. A light emitting diode based on this geometry has been demonstrated
Evidence for Factorization in Three-body B --> D(*) K- K0 Decays
Motivated by recent experimental results, we use a factorization approach to
study the three-body B --> D(*) K- K0 decay modes. Two mechanisms are proposed
for kaon pair production: current-produced (from vacuum) and transition (from B
meson). The Bbar0 --> D(*)+ K- K0 decay is governed solely by the
current-produced mechanism. As the kaon pair can be produced only by the vector
current, the matrix element can be extracted from e+ e- --> K Kbar processes
via isospin relations. The decay rates obtained this way are in good agreement
with experiment. Both current-produced and transition processes contribute to
B- --> D(*)0 K- K0 decays. By using QCD counting rules and the measured B- -->
D(*)0 K- K0 decay rates, the measured decay spectra can be understood.Comment: 17 pages, 6 figure
Recommended from our members
An Unruptured Anterior Communicating Artery Aneurysm with Bilateral Infraoptic Anterior Cerebral Arteries. Case Report and Review of the Literature
Variations of the anterior cerebral artery-anterior communicating artery complex are commonly identified in aneurysm surgery. An infraoptic course of the anterior cerebral artery is exceedingly rare. Robison first described this anomaly from an anatomic dissection in 1959. A unilateral anomalous infraoptic anterior cerebral artery is more common than anomalies of bilateral infraoptic anterior cerebral arteries. We present the case of an unruptured aneurysm at the anterior communicating artery in a patient with bilateral infraoptic anterior cerebral arteries, identified by computed tomography angiography and verified during surgery. Implications for aneurysm formation and surgical treatment are discussed
Seasonal and spatial dynamics of the primary vector of plasmodium knowlesi within a major transmission focus in Sabah, Malaysia
Background
The simian malaria parasite Plasmodium knowlesi is emerging as a public health problem in Southeast Asia, particularly in Malaysian Borneo where it now accounts for the greatest burden of malaria cases and deaths. Control is hindered by limited understanding of the ecology of potential vector species.
Methodology/Principal Findings
We conducted a one year longitudinal study of P. knowlesi vectors in three sites within an endemic area of Sabah, Malaysia. All mosquitoes were captured using human landing catch. Anopheles mosquitoes were dissected to determine, oocyst, sporozoites and parous rate. Anopheles balabacensis is confirmed as the primary vector of. P. knowlesi (using nested PCR) in Sabah for the first time. Vector densities were significantly higher and more seasonally variable in the village than forest or small scale farming site. However An. balabacensis survival and P. knowlesi infection rates were highest in forest and small scale farm sites. Anopheles balabacensis mostly bites humans outdoors in the early evening between 1800 to 2000hrs.
Conclusions/Significance
This study indicates transmission is unlikely to be prevented by bednets. This combined with its high vectorial capacity poses a threat to malaria elimination programmes within the region.
Author Summary
The first natural infection of Plasmodium knowlesi was reported 40 years ago. At that time it was perceived that the infection would not affect humans. However, now P. knowlesi is the predominant malaria species (38% of the cases) infecting people in Malaysia and is a notable obstacle to malaria elimination in the country. Plasmodium knowlesi has also been reported from all countries in Southeast Asia with the exception of Lao PDR and Timor Leste. In Sabah, Malaysian Borneo cases of human P. knowlesi are increasing. Thus, a comprehensive understanding of the bionomics of the vectors is required so as to enable proper control strategies. Here, we conducted a longitudinal study in Kudat district, Sabah, to determine and characterize the vectors of P. knowlesi within this transmission foci. Anopheles balabacensis was the predominant mosquito in all study sites and is confirmed as vector for P. knowlesi and other simian malaria parasites. The peak biting time was in the early part of the evening between1800 to 2000. Thus, breaking the chain of transmission is an extremely challenging task for the malaria elimination programme
Structural Characterization of Rapid Thermal Oxidized Si\u3csub\u3e1−x−y\u3c/sub\u3eGe\u3csub\u3ex\u3c/sub\u3eC\u3csub\u3ey\u3c/sub\u3e Alloy Films Grown by Rapid Thermal Chemical Vapor Deposition
The structural properties of as-grown and rapid thermal oxidized Si1−x−yGexCy epitaxial layers have been examined using a combination of infrared, x-ray photoelectron, x-ray diffraction, secondary ion mass spectroscopy, and Raman spectroscopy techniques. Carbon incorporation into the Si1−x−yGexCy system can lead to compressive or tensile strain in the film. The structural properties of the oxidized Si1−x−yGexCy film depend on the type of strain (i.e., carbon concentration) of the as-prepared film. For compressive or fully compensated films, the oxidation process drastically reduces the carbon content so that the oxidized films closely resemble to Si1−xGex films. For tensile films, two broad regions, one with carbon content higher and the other lower than that required for full strain compensation, coexist in the oxidized films
Low-Mass Baryon-Antibaryon Enhancements in B Decays
The nature of low-mass baryon-antibaryon enhancements seen in B decays is
explored. Three possibilities include (i) states near threshold as found in a
model by Nambu and Jona-Lasinio, (ii) isoscalar states with coupled to a pair of gluons, and (iii) low-mass enhancements favored by the
fragmentation process. Ways of distinguishing these mechanisms using angular
distributions and flavor symmetry are proposed.Comment: 8 pages, LaTeX, no figures, to be submitted to Phys. Rev. D. One
reference adde
Improving Run Time in Three-Dimensional Reservoir Hydrodynamics and Water Quality Modeling
Source: ICHE Conference Archive - https://mdi-de.baw.de/icheArchiv
- …