3 research outputs found

    Generic UAV modeling to obtain its aerodynamic and control derivatives

    Get PDF
    This thesis deals with two different software packages to obtain the aerodynamic and control derivatives for a generic unmanned air vehicle (UAV). These data has a dual application. Firstly, it is required in the Mathworks' Simulink 6-degree-of-freedom model of a generic unmanned air vehicle to develop a robust controller and do a variety of trade-offs. Secondly, is also needed to tune the parameters of the existing real-time controllers such as a Piccolo autopilot. The first approach explored in this thesis involves using the LinAir software program developed about a decade ago at Stanford University, the second one relies on the Athena Vortex Lattice package developed at Massachusetts Institute of Technology. The thesis applies two aforementioned packages to generate the aerodynamic data for two different-size UAVs, SIG Rascal and Thorpe Seeop P10B, emphasizing advantages and pitfalls of each approach, and further compares the obtained data with that of some other UAVs such as BAI Aerosystems Tern and Advanced Ceramics Corp. Silver Fox. The thesis ends with some computer simulations based on the obtained aerodynamic data.http://archive.org/details/genericuavmodeli109453817ST Aerospace Limited, Singapore author (civilian)

    Transdermal Maltose-Based Microneedle Patch as Adjunct to Enhance Topical Anesthetic before Intravenous Cannulation of Pediatric Thalassemic Patients Receiving Blood Transfusion: A Randomized Controlled Trial Protocol

    No full text
    Intravenous cannulation is experientially traumatic to children. To minimize this, EMLA® is applied on the would-be-cannulated area before IV cannula insertion. However, the time to achieve its maximum efficacy may be affected due to incomplete cutaneous absorption and the duration of application. The latter may be a limiting factor in a busy healthcare facility. The usage of dissolvable maltose microneedles may circumvent this problem by introducing micropores that will facilitate EMLA® absorption. A randomized phase II cross-over trial will be conducted to compare the Visual Analogue Scale (VAS) pain scores and skin conductance algesimeter index between 4 different interventions (1 fingertip unit (FTU) of EMLA® with microneedle patch for 30 min before cannulation; 0.5 FTU of EMLA® with microneedle patch for 30 min; 1 FTU of EMLA® with microneedle for 15 min; 1 FTU of EMLA® with sham patch for 30 min). A total of 26 pediatric patients with thalassemia aged between 6 and 18 years old and requiring blood transfusion will be recruited in this trial. During the visits, the VAS scores and skin conductance algesimeter index at venous cannulation will be obtained using the VAS rulers and PainMonitor™ machine, respectively. The trial will commence in August 2021 and is anticipated to end by August 2022

    Maritime Interdiction Operations in Logistically Barren Environments

    Get PDF
    Includes supplementary materialThis report contains analysis that shows that existing technology exists to improve Maritime Interdiction Operations (MIO) by approximately 30%. Furthermore, analysis contained herein will aid MIO planning for future operations. Since MIOs are an inherently dangerous, but necessary activity with far reaching implications to theater political and economic dynamics, this improvement is of great interest. MIO is a Naval solution to the problems of smuggling weapons, explosives, people and narcotics. MIO, when employed correctly has the potential to save lives and limit economic/political damage.N
    corecore