5,326 research outputs found
Charmless Three-body Decays of B Mesons
Charmless 3-body decays of B mesons are studied in the framework of the
factorization approach. The nonresonant contributions arising from transitions are evaluated using heavy meson chiral perturbation theory
(HMChPT). The momentum dependence of nonresonant amplitudes is assumed to be in
the exponential form e^{-\alpha_{NR}} p_B\cdot(p_i+p_j)} so that the HMChPT
results are recovered in the soft meson limit . In addition, we
have identified another large source of the nonresonant signal in the matrix
elements of scalar densities, e.g. , which can be
constrained from the decay or . The
intermediate vector meson contributions to 3-body decays are identified through
the vector current, while the scalar meson resonances are mainly associated
with the scalar density. Their effects are described in terms of the
Breit-Wigner formalism. Our main results are: (i) All KKK modes are dominated
by the nonresonant background. The predicted branching ratios of
, and modes are consistent with the
data within errors. (ii) Although the penguin-dominated
decay is subject to a potentially significant tree pollution, its effective
is very similar to that of the mode. However, direct
CP asymmetry of the former, being of order -4%, is more prominent than the
latter. (iii) For decays, we found sizable nonresonant
contributions in and modes, in agreement
with the Belle measurements but larger than the BaBar result.Comment: 39 pages, 2 figures, version to appear in PR
Assessing In-service Teachers’ Chemistry Content Knowledge and Self-efficacy in Teaching the K to 12 Science Curriculum
As the K to 12 Science program was formally implemented, interventions to enhance competence and confidence of teachers in teaching science in a spiral progression approach are main concerns. This study aims to assess the chemistry content knowledge and self-efficacy of 38 in-service teachers enrolled in a graduate program from a teacher education institution using a content knowledge test (CKT) and a self-efficacy beliefs scale (SeS) using a mixed-method approach. Quantitative findings reveal that the least mastered topics in chemistry of the teacher-respondents include solutions, chemical bonding, the mole concept, gas laws, and chemical reactions. The science teachers say they are “somewhat confident” in teaching the chemistry topics. Qualitative findings include difficulties in answering the CKT and challenges encountered in teaching chemistry using the K to 12 science curriculum. In the needs analysis, key findings in the results of focus group discussion are used to verify quantitative findings. The correlation between content knowledge and self-efficacy beliefs is r = -0.12, with findings showing a negligible to low correlation. This implies that even if teachers perceive that they are “somewhat confident” in teaching chemistry topics, such beliefs do not match their content knowledge scores. Valid findings are based on the CKT results and further suggest that the CKT (not the SeS) is a good measure in determining the content learning needs of teachers
Charmless Two-body Baryonic B Decays
We study charmless two-body baryonic B decays in a diagramatic approach.
Relations on decay amplitudes are obtained. In general there are more than one
tree and more than one penguin amplitudes. The number of independent amplitudes
can be reduced in the large m_B limit. It leads to more predictive results.
Some prominent modes for experimental searches are pointed out.Comment: 15 pages, 2 figures. To appear in Phys. Rev.
Non-invertible transformations and spatiotemporal randomness
We generalize the exact solution to the Bernoulli shift map. Under certain
conditions, the generalized functions can produce unpredictable dynamics. We
use the properties of the generalized functions to show that certain dynamical
systems can generate random dynamics. For instance, the chaotic Chua's circuit
coupled to a circuit with a non-invertible I-V characteristic can generate
unpredictable dynamics. In general, a nonperiodic time-series with truncated
exponential behavior can be converted into unpredictable dynamics using
non-invertible transformations. Using a new theoretical framework for chaos and
randomness, we investigate some classes of coupled map lattices. We show that,
in some cases, these systems can produce completely unpredictable dynamics. In
a similar fashion, we explain why some wellknown spatiotemporal systems have
been found to produce very complex dynamics in numerical simulations. We
discuss real physical systems that can generate random dynamics.Comment: Accepted in International Journal of Bifurcation and Chao
Hadronic B Decays to Charmed Baryons
We study exclusive B decays to final states containing a charmed baryon
within the pole model framework. Since the strong coupling for is larger than that for , the two-body charmful decay
has a rate larger than
as the former proceeds via the pole while the latter via the
pole. By the same token, the three-body decay receives less baryon-pole contribution than
. However, because the important charmed-meson
pole diagrams contribute constructively to the former and destructively to the
latter, has a rate slightly larger than
. It is found that one quarter of the rate comes from the resonant contributions. We discuss
the decays and
and stress that they are not color suppressed even though they can only proceed
via an internal W emission.Comment: 25 pages, 6 figure
Kinetic Study on Heavy Metal Divalent Ions Removal using Zirconium-Based Magnetic Sorbent
In this research, zirconium-based magnetic sorbent synthesised by chemical co-precipitation method is explored as a potential sorbent for removal of divalent metal ions from aqueous solution. The interaction characteristics between the ions and the sorbent were elucidated by instrumental analyses such as Fourier Transform InfraRed (FT-IR) Spectroscopy, Scanning Electron Microscopy (SEM), and Brunauer, Emmett, and Teller (BET) surface area analyser. Results show that the sorption rate was increased with an increase in contact time and initial metal ion concentration. Moreover, a two-stage kinetics behaviour was observed, and all the batch experiments achieved an equilibrium state within 4 hours. The evaluation of the adsorption behaviour of heavy metal divalent ions onto the magnetic sorbent was explained using two kinetic models, and it was mostly found to follow the postulate of the pseudo-second-order kinetic model. The validity of kinetic models applied in this study is also evaluated by using a normalised standard deviation
Crystal orientation mapping and microindentation reveal anisotropy in Porites skeletons
Structures made by scleractinian corals support diverse ocean ecosystems. Despite the importance of coral skeletons and their predicted vulnerability to climate change, few studies have examined the mechanical and crystallographic properties of coral skeletons at the micro- and nano-scales. Here, we investigated the interplay of crystallographic and microarchitectural organization with mechanical anisotropy within Porites skeletons by measuring Young’s modulus and hardness along surfaces transverse and longitudinal to the primary coral growth direction. We observed micro-scale anisotropy, where the transverse surface had greater Young’s modulus and hardness by ∼ 6 GPa and 0.2 GPa, respectively. Electron backscatter diffraction (EBSD) revealed that this surface also had a higher percentage of crystals oriented with the a-axis between ± 30-60∘, relative to the longitudinal surface, and a broader grain size distribution. Within a region containing a sharp microscale gradient in Young’s modulus, nanoscale indentation mapping, energy dispersive spectroscopy (EDS), EBSD, and Raman crystallography were performed. A correlative trend showed higher Young’s modulus and hardness in regions with individual crystal bases (c-axis) facing upward, and in crystal fibers relative to centers of calcification. These relationships highlight the difference in mechanical properties between scales (i.e. crystals, crystal bundles, grains). Observations of crystal orientation and mechanical properties suggest that anisotropy is driven by microscale organization and crystal packing, rather than intrinsic crystal anisotropy. In comparison with previous observations of nanoscale isotropy in corals, our results illustrate the role of hierarchical architecture in coral skeletons and the influence of biotic and abiotic factors on mechanical properties at different scales
Recent advances on information transmission and storage assisted by noise
The interplay between nonlinear dynamic systems and noise has proved to be of
great relevance in several application areas. In this presentation, we focus on
the areas of information transmission and storage. We review some recent
results on information transmission through nonlinear channels assisted by
noise. We also present recent proposals of memory devices in which noise plays
an essential role. Finally, we discuss new results on the influence of noise in
memristors.Comment: To be published in "Theory and Applications of Nonlinear Dynamics:
Model and Design of Complex Systems", Proceedings of ICAND 2012 (Springer,
2014
Minimal Work Principle and its Limits for Classical Systems
The minimal work principle asserts that work done on a thermally isolated
equilibrium system, is minimal for the slowest (adiabatic) realization of a
given process. This principle, one of the formulations of the second law, is
operationally well-defined for any finite (few particle) Hamiltonian system.
Within classical Hamiltonian mechanics, we show that the principle is valid for
a system of which the observable of work is an ergodic function. For
non-ergodic systems the principle may or may not hold, depending on additional
conditions. Examples displaying the limits of the principle are presented and
their direct experimental realizations are discussed.Comment: 4 + epsilon pages, 1 figure, revte
- …