29,459 research outputs found

    The noncommutative harmonic oscillator in more than one dimensions

    Get PDF
    The noncommutative harmonic oscillator in arbitrary dimension is examined. It is shown that the ⋆\star-genvalue problem can be decomposed into separate harmonic oscillator equations for each dimension. The noncommutative plane is investigated in greater detail. The constraints for rotationally symmetric solutions and the corresponding two-dimensional harmonic oscillator are solved. The angular momentum operator is derived and its ⋆\star-genvalue problem is shown to be equivalent to the usual eigenvalue problem. The ⋆\star-genvalues for the angular momentum are found to depend on the energy difference of the oscillations in each dimension. Furthermore two examples of assymetric noncommutative harmonic oscillator are analysed. The first is the noncommutative two-dimensional Landau problem and the second is the three-dimensional harmonic oscillator with symmetrically noncommuting coordinates and momenta.Comment: 12 page

    Pressure-Temperature Phase Diagram of Multiferroic Ni3V2O8Ni_3V_2O_8

    Full text link
    The pressure-temperature phase diagram of multiferroic Ni3V2O8Ni_3V_2O_8 is investigated for hydrostatic pressures up to 2 GPa. The stability range of the ferroelectric phase associated with the incommensurate helical spin order is reduced by pressure and ferroelectricity is completely suppressed at the critical pressure of 1.64 GPa at 6.2 K. Thermal expansion measurements at ambient pressure show strong step-like anomalies of the lattice parameters associated with the lock-in transition into the commensurate paraelectric phase. The expansion anomalies are highly anisotropic, the related volume change is consistent with the high-pressure phase diagram

    Symplectic Quantization of Open Strings and Noncommutativity in Branes

    Full text link
    We show how to translate boundary conditions into constraints in the symplectic quantization method by an appropriate choice of generalized variables. This way the symplectic quantization of an open string attached to a brane in the presence of an antisymmetric background field reproduces the non commutativity of the brane coordinates.Comment: We included a comparison with previous results obtained from Dirac quantization, emphasizing the fact that in the symplectic case the boundary conditions, that lead to the non commutativity, show up from the direct application of the standard method. Version to appear in Phys. Rev.

    Improving Effective Surgical Delivery in Humanitarian Disasters: Lessons from Haiti

    Get PDF
    Kathryn Chu and colleagues describe the experiences of Médecins sans Frontières after the 2010 Haiti earthquake, and discuss how to improve delivery of surgery in humanitarian disasters

    Novel Field-Induced Phases in HoMnO3 at Low Temperatures

    Full text link
    The novel field-induced re-entrant phase in multiferroic hexagonal HoMnO3 is investigated to lower temperatures by dc magnetization, ac susceptibility, and specific heat measurements at various magnetic fields. Two new phases have been unambiguously identified below the Neel transition temperature, TN=76 K, for magnetic fields up to 50 kOe. The existence of an intermediate phase between the P[6]_3[c]m and P[6]_3c[m] magnetic structures (previously predicted from dielectric measurements) was confirmed and the magnetic properties of this phase have been investigated. At low temperatures (T<5 K) a dome shaped phase boundary characterized by a magnetization jump and a narrow heat capacity peak was detected between the magnetic fields of 5 kOe and 18 kOe. The transition across this phase boundary is of first order and the magnetization and entropy jumps obey the magnetic analogue of the Clausius-Clapeyron relation. Four of the five low-temperature phases coexist at a tetracritical point at 2 K and 18 kOe. The complex magnetic phase diagram so derived provides an informative basis for unraveling the underlying driving forces for the occurrence of the various phases and the coupling between the different orders.Comment: 14 pages, 14 figure

    Plasma-Like Negative Capacitance in Nano-Colloids

    Full text link
    A negative capacitance has been observed in a nano-colloid between 0.1 and 10^-5 Hz. The response is linear over a broad range of conditions. The low-omega dispersions of both the resistance and capacitance are consistent with the free-carrier plasma model, while the transient behavior demonstrates an unusual energy storage mechanism. A collective excitation, therefore, is suggested.Comment: 3 pages, 3 figure
    • …
    corecore