11,100 research outputs found
Neural Feedback Scheduling of Real-Time Control Tasks
Many embedded real-time control systems suffer from resource constraints and
dynamic workload variations. Although optimal feedback scheduling schemes are
in principle capable of maximizing the overall control performance of
multitasking control systems, most of them induce excessively large
computational overheads associated with the mathematical optimization routines
involved and hence are not directly applicable to practical systems. To
optimize the overall control performance while minimizing the overhead of
feedback scheduling, this paper proposes an efficient feedback scheduling
scheme based on feedforward neural networks. Using the optimal solutions
obtained offline by mathematical optimization methods, a back-propagation (BP)
neural network is designed to adapt online the sampling periods of concurrent
control tasks with respect to changes in computing resource availability.
Numerical simulation results show that the proposed scheme can reduce the
computational overhead significantly while delivering almost the same overall
control performance as compared to optimal feedback scheduling.Comment: To appear in International Journal of Innovative Computing,
Information and Contro
SIRT1, Is It a Tumor Promoter or Tumor Suppressor?
SIRT1 has been considered as a tumor promoter because of its increased expression in some types of cancers and its role in inactivating proteins that are involved in tumor suppression and DNA damage repair. However, recent studies demonstrated that SIRT1 levels are reduced in some other types of cancers, and that SIRT1 deficiency results in genetic instability and tumorigenesis, while overexpression of SIRT1 attenuates cancer formation in mice heterozygous for tumor suppressor p53 or APC. Here, I review these recent findings and discuss the possibility that activation of SIRT1 both extends lifespan and inhibits cancer formation
BRCA1: cell cycle checkpoint, genetic instability, DNA damage response and cancer evolution
Germline mutations of the breast cancer associated gene 1 (BRCA1) predispose women to breast and ovarian cancers. BRCA1 is a large protein with multiple functional domains and interacts with numerous proteins that are involved in many important biological processes/pathways. Mounting evidence indicates that BRCA1 is involved in all phases of the cell cycle and regulates orderly events during cell cycle progression. BRCA1 deficiency, consequently causes abnormalities in the S-phase checkpoint, the G(2)/M checkpoint, the spindle checkpoint and centrosome duplication. The genetic instability caused by BRCA1 deficiency, however, also triggers cellular responses to DNA damage that blocks cell proliferation and induces apoptosis. Thus BRCA1 mutant cells cannot develop further into full-grown tumors unless this cellular defense is broken. Functional analysis of BRCA1 in cell cycle checkpoints, genome integrity, DNA damage response (DDR) and tumor evolution should benefit our understanding of the mechanisms underlying BRCA1 associated tumorigenesis, as well as the development of therapeutic approaches for this lethal disease
Fuzzy Feedback Scheduling of Resource-Constrained Embedded Control Systems
The quality of control (QoC) of a resource-constrained embedded control
system may be jeopardized in dynamic environments with variable workload. This
gives rise to the increasing demand of co-design of control and scheduling. To
deal with uncertainties in resource availability, a fuzzy feedback scheduling
(FFS) scheme is proposed in this paper. Within the framework of feedback
scheduling, the sampling periods of control loops are dynamically adjusted
using the fuzzy control technique. The feedback scheduler provides QoC
guarantees in dynamic environments through maintaining the CPU utilization at a
desired level. The framework and design methodology of the proposed FFS scheme
are described in detail. A simplified mobile robot target tracking system is
investigated as a case study to demonstrate the effectiveness of the proposed
FFS scheme. The scheme is independent of task execution times, robust to
measurement noises, and easy to implement, while incurring only a small
overhead.Comment: To appear in International Journal of Innovative Computing,
Information and Contro
Roles of FGF Receptors in Mammalian Development and Congenital Diseases
International audienceFour fibroblast growth factor receptors (FGFR1-4) constitute a family of transmembrane tyrosine kinases that serve as high affinity receptors for at least 22 FGF ligands. Gene targeting in mice has yielded valuable insights into the functions of this important gene family in multiple biological processes. These include mesoderm induction and patterning; cell growth, migration, and differentiation; organ formation and maintenance; neuronal differentiation and survival; wound healing; and malignant transformation. Furthermore, discoveries that mutations in three of the four receptors result in more than a dozen human congenital diseases highlight the importance of these genes in skeletal development. In this review, we will discuss recent progress on the roles of FGF receptors in mammalian development and congenital diseases, with an emphasis on signal transduction pathways
RNAi in mice: a promising approach to decipher gene functions in vivo
International audienceRNA interference (RNAi) is a simple and powerful tool widely used to study gene functions in many species. Vector-based systems using RNA polymerase III promoters have been developed to achieve stable expression of small interfering RNA (siRNA) or small hairpin RNA (shRNA) in mammalian cells. Recent investigations demonstrated that when, combined with the Cre-loxP system, the vector-based RNAi can be used to achieve conditional or tissue specific knockdown of endogenous genes with high efficiency in mice. Here, we review these recent progresses and discuss the advantages, limitations and future development of this emerging technology
Optimization of a 3-D high-power LED lamp: Orthogonal experiment method and experimental verification
The temperature distribution in a 3-D high-power light emitting diode lamp is affect by multiple factors, the orthogonal experiment method is adopted to elucidate three main factors, an experiment is designed to verify the main finding, which is useful for an optimal design of the light emitting diode lamp
- …