25,025 research outputs found

    Evidence for the Role of Instantons in Hadron Structure from Lattice QCD

    Full text link
    Cooling is used as a filter on a set of gluon fields sampling the Wilson action to selectively remove essentially all fluctuations of the gluon field except for the instantons. The close agreement between quenched lattice QCD results with cooled and uncooled configurations for vacuum correlation functions of hadronic currents and for density-density correlation functions in hadronic bound states provides strong evidence for the dominant role of instantons in determining light hadron structure and quark propagation in the QCD vacuum.Comment: 26 pages in REVTeX, plus 10 figures, uuencoded. Submitted to Physical Review D. MIT-CTP-226

    Localization of Classical Waves in Weakly Scattering Two-Dimensional Media with Anisotropic Disorder

    Get PDF
    We study the localization of classical waves in weakly scattering 2D systems with anisotropic disorder. The analysis is based on a perturbative path-integral technique combined with a spectral filtering that accounts for the first-order Bragg scattering only. It is shown that in the long-wavelength limit the radiation is always localized, and the localization length is independent of the direction of propagation, the latter in contrast to the predictions based on an anisotropic tight-binding model. For shorter wavelengths that are comparable to the correlation scales of the disorder, the transport properties of disordered media are essentially different in the directions along and across the correlation ellipse. There exists a frequency-dependent critical value of the anisotropy parameter, below which waves are localized at all angles of propagation. Above this critical value, the radiation is localized only within some angular sectors centered at the short axis of the correlation ellipse and is extended in other directions.Comment: 10 pages, 5 figure

    Correlation Functions of Hadron Currents in the QCD Vacuum Calculated in Lattice QCD

    Full text link
    Point-to-point vacuum correlation functions for spatially separated hadron currents are calculated in quenched lattice QCD on a 163×2416^3\times 24 lattice with 6/g2=5.76/g^2=5.7. The lattice data are analyzed in terms of dispersion relations, which enable us to extract physical information from small distances where asymptotic freedom is apparent to large distances where the hadronic resonances dominate. In the pseudoscalar, vector, and axial vector channels where experimental data or phenomenological information are available, semi-quantitative agreement is obtained. In the nucleon and delta channels, where no experimental data exist, our lattice data complement experiments. Comparison with approximations based on sum rules and interacting instantons are made, and technical details of the lattice calculation are described.Comment: 31 pages in REVTeX (with 10 figures to be added using figures command), MIT CTP #214

    Comparative Raman Studies of Sr2RuO4, Sr3Ru2O7 and Sr4Ru3O10

    Full text link
    The polarized Raman spectra of layered ruthenates of the Srn+1RunO3n+1 (n=1,2,3) Ruddlesden-Popper series were measured between 10 and 300 K. The phonon spectra of Sr3Ru2O7 and Sr4Ru3O10 confirmed earlier reports for correlated rotations of neighboring RuO6 octahedra within double or triple perovskite blocks. The observed Raman lines of Ag or B1g symmetry were assigned to particular atomic vibrations by considering the Raman modes in simplified structures with only one double or triple RuO6 layer per unit cell and by comparison to the predictions of lattice dynamical calculations for the real Pban and Pbam structures. Along with discrete phonon lines, a continuum scattering, presumably of electronic origin, is present in the zz, xx and xy, but not in the x'y' and zx spectra. Its interference with phonons results in Fano shape for some of the lines in the xx and xy spectra. The temperature dependencies of phonon parameters of Sr3Ru2O7 exhibit no anomaly between 10 and 300 K where no magnetic transition occurs. In contrast, two B1g lines in the spectra of Sr4Ru3O10, corresponding to oxygen vibrations modulating the Ru-O-Ru bond angle, show noticeable hardening with ferromagnetic ordering at 105 K, thus indicating strong spin-phonon interaction.Comment: 9 pages, 12 figure

    The Quantum Geometric Phase between Orthogonal States

    Full text link
    We show that the geometric phase between any two states, including orthogonal states, can be computed and measured using the notion of projective measurement, and we show that a topological number can be extracted in the geometric phase change in an infinitesimal loop near an orthogonal state. Also, the Pancharatnam phase change during the passage through an orthogonal state is shown to be either π\pi or zero (mod 2π2\pi). All the off-diagonal geometric phases can be obtained from the projective geometric phase calculated with our generalized connection

    Resolution-dependent quark masses from meson correlators

    Get PDF
    We explore the impact of a resolution-dependent constituent quark mass, as recently applied to diffractive meson production, in QCD correlation functions of several spin-0 and spin-1 meson channels. We compare the resulting correlators with experimental and lattice data, analyze the virtues and limitations of the approach, and discuss the channel dependence of the obtained effective quark masses.Comment: 15 pages, 5 figures, to be published in Phys. Rev. C, reference adde

    Raman scattering study of (Kx_xSr1−x_{1-x})Fe2_2As2_2 (xx = 0.0, 0.4)

    Full text link
    Polarized Raman spectra of non-superconducting SrFe2_2As2_2 and superconducting K0.4_{0.4}Sr0.6_{0.6}Fe2_2As2_2 (Tc=37T_c = 37 K) are reported. All four phonon modes (A1g_{1g} + B1g_{1g} + 2Eg_g) allowed by symmetry, are found and identified. Shell model gives reasonable description of the spectra. No detectable anomalies are observed near the tetragonal-to-orthorhombic transition in SrFe2_2As2_2 or the superconducting transition in K0.4_{0.4}Sr0.6_{0.6}Fe2_2As2_2.Comment: 4 pages, 4 figures, 2 table

    Glueballs and Instantons

    Get PDF
    We study correlation functions and Bethe Salpeter amplitudes for the scalar, the pseudoscalar and the tensor glueballs using an instanton-based model of the QCD vacuum. We consider both the pure gauge case and the situation for real QCD with two light quark flavors. We show that instantons lead to a strong modification of the correlation functions as compared to their perturbative behavior. In particular, we find a strong attractive force in the JCP=0++J^{CP}=0^{++} channel and repulsion in the 0+−0^{+-} channel. Due to the strong classical field of the instantons, these effects are much larger than the spin splittings observed in mesons made of quarks. The resulting masses, coupling constants and wave functions appear to be in agreement with lattice gauge simulations.Comment: revised version published in Phys. Rev. Let

    A Mean Field Approach To The Instanton-Induced Effect Close To The QCD Phase Transition

    Get PDF
    In the instanton models the chiral phase transition is driven by a transition from random instanton-antiinstanton liquid and correlated instanton-antiinstanton molecules. So far this phenomenon was studied by numerical simulations, while we develop alternative semi-analytic approach. For two massless quark flavors, both instantons and ``molecules" generate specific 4-fermion effective interactions. After those are derived, we determine the temperature dependence of the thermodynamic quantities, the quark condensate and the fraction of molecules using standard mean field method. Using Bethe-Salpeter equation, we calculate T-dependence of mesonic correlation functions.Comment: 26 pages, LaTeX, 6 postscript files of 6 figures in additio
    • 

    corecore