17 research outputs found

    Spatial Distribution and Contamination Assessment of Surface Heavy Metals off the Western Guangdong Province and Northeastern Hainan Island

    No full text
    Surface sediments collected from the continental shelf off the western Guangdong Province and northeastern Hainan Island are analyzed for selected heavy metals contents including Cd, Cr, Cu, Pb, Zn, and As to determine spatial distribution, potential ecological risks, and sources. In addition, some of the controlling factors of heavy metals distribution are also discussed. The average heavy metals contents decrease in the order of Zn > Cr > Pb > Cu > As > Cd. The averaged pollution degree, as shown by the index of geo-accumulation (Igeo), decreases in the order of Zn > Cu > Pb > Cr > Cd > As. Due to the barrier of islands, the Igeo values of Zn, Pb, Cr, Cu, and Cd near the Hailing and Xiachuan Islands are larger than those in other areas. Meanwhile, the Igeo value of As near the coastal area off the estuary of Wanquan River is clearly larger than that in other areas. Based on the results of potential ecological risk index, Cd, Cu, and As should be paid more attention for the contamination risk in future. The results of Pearson correlation analysis and principal component analysis indicate that Zn, Cr, Pb, Cu, and Cd are mainly from the Pearl River and surrounding small rivers, whereas As originates from the Hainan Island. The grain size is one of the main controlling factors for heavy metals distribution, and the anthropogenic activity also plays an important role

    Effects of Migration and Diffusion of Suspended Sediments on the Seabed Environment during Exploitation of Deep-Sea Polymetallic Nodules

    No full text
    With the increase in demand for metal resources, research on deep-sea polymetallic nodule mining has been reinvigorated, but the problem of its environmental impact cannot be ignored. No matter what method is used for mining, it will disturb the surface sediments of the seabed, thereby increasing the concentration of suspended solid particles and metal ions in the water body, changing the properties of the near-bottom water body and sediments, and affecting biological activity and the living environment. Focusing on the ecological and environmental impacts of deep-sea polymetallic nodule mining, taking as our main subject of focus the dynamic changes in sediments, we investigated the environmental impacts of nodule mining and their relationships with each other. On this basis, certain understandings are summarized relating to the ecological and environmental impacts of deep-sea polymetallic nodule mining, based on changes in the engineering geological properties of sediment, and solutions for current research problems are proposed

    Enrichment of Smectite in the REY‐Rich Mud of the Clarion‐Clipperton Fracture Zone in the Eastern Pacific and Its Geological Significance

    No full text
    Abstract REY‐rich mud, consisting of deep‐sea sediments with high concentrations of rare‐earth elements and yttrium (REY), holds significant economic potential. Many studies have been conducted on biogenic apatite, ferromanganese micronodule, and phillipsite within these deposits to ascertain the REY enrichment mechanisms. However, the knowledge of clay minerals in REY‐rich mud, which is the predominant component of pelagic sediments, is still limited. In this study, two adjacent gravity cores (core GC02: REY‐rich mud; core GC03: typical sediments of equatorial Pacific) were collected from the Clarion‐Clipperton Fracture Zone (CCFZ) of the Eastern Pacific to study the role of different clay minerals in REY enrichment. The clay minerals in core GC03 and core GC02 are primarily illite (averaging 60%) and smectite (averaging 63%), respectively, and the smectite in core GC02 was mainly Fe‐rich, which was probably formed via the reaction between opal and FeOOH. Moreover, multiple studies have reported similar smectite enrichment in REY‐rich mud, suggesting that it is a common characteristic. The presumed hydrothermal or volcanic origination of smectite in REY‐rich layers of core GC02 indicates the essential role of hydrothermal and volcanic activities in REY‐rich mud formation during the Oligocene in the western CCFZ

    Effects of Migration and Diffusion of Suspended Sediments on the Seabed Environment during Exploitation of Deep-Sea Polymetallic Nodules

    No full text
    With the increase in demand for metal resources, research on deep-sea polymetallic nodule mining has been reinvigorated, but the problem of its environmental impact cannot be ignored. No matter what method is used for mining, it will disturb the surface sediments of the seabed, thereby increasing the concentration of suspended solid particles and metal ions in the water body, changing the properties of the near-bottom water body and sediments, and affecting biological activity and the living environment. Focusing on the ecological and environmental impacts of deep-sea polymetallic nodule mining, taking as our main subject of focus the dynamic changes in sediments, we investigated the environmental impacts of nodule mining and their relationships with each other. On this basis, certain understandings are summarized relating to the ecological and environmental impacts of deep-sea polymetallic nodule mining, based on changes in the engineering geological properties of sediment, and solutions for current research problems are proposed

    Development of major element proxies for magmatic H2O content in oceanic basalts

    No full text
    Analysis of H2O concentrations in quenched glass has enabled significant improvements in our understanding of its role in mantle melting, magma differentiation, eruption dynamics, and the origin of mantle heterogeneity. Direct measurements of dissolved H2O in glass, however, are not always possible, and we lack robust methods of constraining magmatic H2O contents in aphyric, bulk rock samples that lack glass. Here, we present a major element hygrometer for mid-ocean ridge (MOR) and back-arc basin (BAB) basalt magmas based on the sensitivity of phenocryst phase assemblages to magmatic H2O contents, which translate into resolvable differences in liquid lines of descent (LLDs) as a function of magmatic H2O concentrations. Existing hygrometers lack sufficient resolution to be useful at the low H2O concentrations typical of MOR and BAB basalts (\u3c1.0 wt%). We develop the major element proxy, Al2O3/FeO*(7.0) (fractionation-corrected to 7 wt% MgO), for determining magmatic H2O contents using cogenetic suites of oceanic basalts with well-defined LLDs and well-constrained H2O contents. H2O(7.0) positively correlates with Al2O3/FeO*(7.0) in the mid-ocean ridge basalt dataset, and this relationship is maintained in back-arc basin basalts with a broader range of water contents (up to 2.0 wt%). The main petrological control over this covariation is the role of H2O in suppressing plagioclase crystallization, while crystallization pressure and magmatic oxygen fugacity play lesser roles. Herein, we present an empirical model that uses Al2O3/FeO*(7.0) to estimate the magmatic water content in plagioclase-saturated oceanic basaltic magmas: H2O(7.0) = 1.109Al2O3/FeO∗(7.0) − 1.111. This model enables the estimation of magmatic H2O content using whole-rock major element data, which can be readily determined for aphyric or crystalline lavas that lack quenched glassy rinds, melt inclusions, or appropriate phenocryst assemblages

    Ancient Melt Depletion and Metasomatic History of the Subduction Zone Mantle: Osmium Isotope Evidence of Peridotites from the Yap Trench, Western Pacific

    No full text
    Highly depleted peridotites from the Yap Trench in the western Pacific Ocean have been studied for Re-Os elements and Re-Os isotopes. These peridotites have a low Re-Os content and variable 187Os/188Os ratios (0.12043–0.14867). The highest 187Os/188Os ratio is far higher than that of the primitive upper mantle and the lowest 187Os/188Os ratio is comparable to the most unradiogenic 187Os/188Os ratio (0.11933) discovered in subduction zone peridotites. The suprachondritic 187Os/188Os ratios of the Yap Trench peridotites results from modification of the mantle wedge by slab-derived fluid and melt. This is consistent with the observation that high 187Os/188Os ratios generally occur in oceanic peridotites with low Os content (<2 ppb) since Os may be reduced during late processes such as fluid alteration and melt refertilization. The sub-chondritic 187Os/188Os ratios of the Yap Trench peridotites correspond to a Re depletion age of 0.24–1.16 billion years, which means that these peridotites represent old mantle residue of ancient melting events. This ancient melting, combined with probable back-arc melting and forearc melting during subduction initiation, indicates that the Yap Trench mantle has a complex evolutionary history. The amount of old mantle residue in the oceanic asthenosphere was underestimated because the 187Os/188Os ratio in mantle peridotites is elevated during late processes. Therefore, old depleted mantle fragments may contribute substantially to the chemical heterogeneity of the oceanic mantle

    Constraining Mantle Heterogeneity beneath the South China Sea: A New Perspective on Magma Water Content

    No full text
    The nature of upper mantle is important to understand the evolution of the South China Sea (SCS); thus, we need better constrains on its mantle heterogeneity. Magma water concentration is a good indicator, but few data have been reported. However, the rarity of glass and melt inclusions and the special genesis for phenocrysts in SCS basalts present challenges to analyzing magmatic water content. Therefore, it is possible to estimate the water variations through the characteristics of partial melting and magma crystallization. We evaluated variations in Fe depletion, degree of melt fractions, and mantle source composition along the fossil spreading ridge (FSR) using SCS basalt data from published papers. We found that lava from the FSR 116.2° E, FSR 117.7° E, and non-FSR regions can be considered normal lava with normal water content; in contrast, lava from the FSR 117° E-carbonatite and 114.9–115.0° E basalts have higher water content and show evidence of strong Fe depletion during the fractional crystallization after elimination of the effects of plagioclase oversaturation. The enriched water in the 117° E-carbonatite basalts is contained in carbonated silicate melts, and that in the 114.9–115.0° E basalts results from mantle contamination with the lower continental crust. The lava from the 117° E-normal basalt has much lower water content because of the lesser influence of the Hainan plume. Therefore, there must be a mantle source compositional transition area between the southwestern and eastern sub-basins of the SCS, which have different mantle evolution histories. The mantle in the west is more affected by contamination with continental materials, while that in the east is more affected by the Hainan mantle plume

    Multi-stage growth and fluid evolution of a hydrothermal sulphide chimney in the East Pacific Ridge 1-2 degrees S hydrothermal field: constraints from in situ sulphur isotopes

    No full text
    Sulphur isotopes can be used as a powerful tool to trace fluid evolution and explore the formation of chimneys. To clarify the in situ S isotopic variations of sulphides at the micro-scale, we analyzed a sulphide chimney collected from the hydrothermal field in the East Pacific Rise 1–2° S using a sensitive high-mass-resolution ion micro-probe for stable isotopes (SHRIMP SI). Three mineral zones can be identified in the chimney: an external outer wall of porous anhydrite and colloform pyrite, an internal middle zone of sub-euhedral pyrite and massive chalcopyrite, and an inner zone of massive pyrite. The δ34SV-CDT values of the sulphides fall within the range 1.83–7.51‰ (avg. 4.05‰, n = 16), and S isotopic values increase from the core (3.09‰, n = 3) to the middle (3.78‰, n = 11) to the edge (6.99‰, n = 2). These results illustrate mineral crystallization processes and the mixing between seawater-derived S and magmatic–hydrothermal fluids during the growth of the chimney. The zones from the edge to the core are characterized by crystal morphologies of colloform/anhedral pyrite to massive pyrite with decreasing δ34S values, revealing multi-stage mineral deposition and sulphur isotopic fractionation. In contrast to the increase in δ34S values from the core to the edge in one profile (profile A), anomalously low δ34S values in fine-grained pyrite relative to chalcopyrite in another profile (profile B) in the middle zone result from S isotopic exchange between seawater SO4 2− and fluid H2S due to different fluid–seawater mixing, possibly caused by variations in permeability and porosity across the chimney.This work was financially supported by the National Natural Science Foundation of China (No. 41276055 & 41406066, the Fundamental Research Funds for the Central Public-Interest Scientific Institution (No. JT1701) and the China Ocean Mineral R&D Association (COMRA) project (No. DY135-G2-1-01, 03 & DY135-S2- 2-05)

    Volatile Element Evidence of Local MORB Mantle Heterogeneity Beneath the Southwest Indian Ridge, 48°–51°E

    No full text
    Abstract The mantle source beneath the Southwest Indian Ridge (SWIR) reflects a complex history of contamination. Magmatic volatile contents are vital tracers of these kinds of heterogeneities, which may fractionate otherwise constant volatile/non‐volatile elemental ratios, such as the H2O/Ce ratio. Although several studies have recently used trace element and isotopic data to address mantle source heterogeneity and magmatic processes at SWIR 48°–51°E region, volatile element constraints provide a valuable test of models for the origins of mantle heterogeneities in this region. Here, we present new data for nine rare basaltic glass samples from the 48°–51°E region, which enable careful assessment of the effects of primary versus secondary processes on the glass volatile contents. These samples are strongly affected by variable extents of carbon degassing, and shallow assimilation of Cl‐rich fluid, but also reveal consistently high H2O/Ce ratios (458.8 ± 14.9), among the highest in MORBs, that cannot be explained by late‐stage secondary processes, crustal assimilation, or simple melting of peridotite mantle at variable depths. Instead, the high H2O/Ce ratios are features of the mantle source composition. The 48°–51°E region is notably more depleted in highly incompatible trace elements relative to other regions of the SWIR, although this depletion is not apparent in H2O, which is similarly abundant throughout the SWIR. We link the high H2O/Ce ratios in these glasses with other trace element characteristics diagnostic of subduction and fluid addition, suggesting that the mantle source reflects signatures of a refractory mantle residue that previously melted within a subduction zone

    Gas Sources, Migration, and Accumulation Systems: The Shallow Subsurface and Near-Seafloor Gas Hydrate Deposits

    No full text
    Compared with the deeply buried marine gas hydrate deposits, gas hydrates in the shallow subsurface, close to and at the seafloor, have attracted more attention owing to their concentrated distribution, high saturation, and easy access. They accumulate at relatively shallow depths <100–120 m and occur as gas hydrate-bearing mounds (also known as hydrate outcrops, pingoes) at the seafloor derived from the growth of hydrates in the shallow subsurface or as pure hydrate chunks formed by gas leakage. This paper reviews and summarizes such gas hydrate systems globally from the perspective of gas sources, migration pathways, and accumulation processes. Here, we divided them into four categories: fault-chimney-controlled, diapir-fault-controlled, fault-controlled, and submarine mud volcano-controlled deposits. Gas chimneys originate immediately above the restricted regions, mostly affected by faults where high gas concentrations trigger elevated pore fluid pressures. Diapirism derives a dendritic network of growth faults facilitating focused gas discharge and hydrate formation near the seafloor. Furthermore, pre-existing faults or fractures created by overpressured gas from greater depths in accretionary tectonics at convergent margins act as preferential pathways channeling free gas upwards to the seafloor. Gas flux rates decrease from the submarine mud volcano center to its margins, creating a concentric pattern of distributing temperature, gas concentrations, and hydrate contents in shallow sediments around the mud volcano. Hydrate-bound hydrocarbons are commonly of thermogenic origin and correspond to high-background geothermal conditions, whereas microbial gas is dominant in a few cases. The presence of heavier hydrocarbons mitigates the inhibition of hydrate formation by salt or heat. Fluid migration and pathways could be compared to the “blood” and “bones” in an organic system, respectively. The root of a pathway serves as the “heart” that gathers and provides considerable free gas concentrations in a restricted area, thereby triggering pore fluid pressures as one important drive force for focused fluid flow in impermeable sediments (the organic system). Besides the suitable temperature and pressure conditions, a prerequisite for the formation and stability of hydrate deposits in the shallow subsurface and at the seafloor is the sufficient supply of gas-rich fluids through the hydrate stability zone. Thus, the proportion of gas migrating from deep sources is significantly larger than that trapped in hydrates. As such, such marine hydrate deposits seem more like temporary carbon storage rather than the main culprit for climate warming at least in a short period
    corecore