131 research outputs found

    A history & future of implantable antennas

    Get PDF
    pre-printImplantable antennas have been used for communication with medical implants for decades. This paper traces their roots from early transcutaneous inductively coupled devices to the microstrip and wire antennas in use today. A suggestion for where this technology may go in the future as medical devices shrink is also given

    Driving Performance in a Simulator as a Function of Pavement and Shoulder Width, Edge Line Presence, and Oncoming Traffic

    Get PDF
    Driving simulation has primarily been used to study issues of driver distraction and to evaluate in-vehicle devices. The visualization and driver performance capabilities of simulators can be applied to more traditional traffic engineering problems as well. This project aims to demonstrate the usefulness of a driving simulator in evaluating geometric designs for two-lane roads. Paved surface width has been shown to be correlated with crash rates and travel speeds on two-lane rural roads throughout Texas. The current project examines how travel lane width, edge line striping, and shoulder width affect driver errors on these roadway types. Issues of simulator validity, scenario development, and simulator sickness are discussed

    Positronium formation in graphene and graphite

    Full text link
    Positronium (Ps) formation on the surface of clean polycrystalline copper (Cu), highly oriented pyrolytic graphite (HOPG) and multi layer graphene (MLG) grown on a polycrystalline copper substrate has been investigated as a function of incident positron kinetic energy (1.5eV to 1keV). Measurments on Cu indicate that as the kinetic energy of the incident positrons increases from 1.5eV to 900eV, the fraction of positrons that form Ps (fPsf_{Ps}) decreases from ~0.5 to ~0.3. However, in HOPG and MLG, instead of a monotonic decrease of fPsf_{Ps} with positron kinetic energy, a sharp peak is observed at ~ 5eV and above ~200eV,remains nearly constant in HOPG and MLG. We propose that in HOPG and MLG, at low incident positron energies the Ps formation is dominated either by a surface Plasmon assisted electron pick up process or by an energy dependent back scattering process. Both these processes can explain the peak observed and the present data can help to augment the understanding of Ps formation from layered materials.Comment: Presented at 18th International Conference on Positron Annihilation, August 19-24, 2018 | Orlando, USA. The following article has been accepted by AIP Conference Proceedings. After it is published, it will be found at https://aip.scitation.org/journal/ap

    Application of Doppler Broadened Gamma Spectroscopy to Study the Surface of Graphene

    Full text link
    We present Doppler broadened gamma spectra, obtained using the newly developed advanced positron beam at the University of Texas at Arlington, from a sample consisting of 6 to 8 layers of graphene (MLG) on polycrystalline Cu. The kinetic energy of the positron beam was varied form 2 eV to 20 keV allowing for a depth resolved measurement. The ratio curves formed by dividing the measured Doppler broadened gamma spectra obtained at low positron kinetic energies (~2eV) to the gamma spectra obtained at 20 keV were compared to ratio curves found by dividing the calculated spectra of bulk graphite to bulk Cu. The ratio curves obtained from the measured results show qualitative agreement with those obtained from the calculated spectra. In particular, both sets of curves indicate a much reduced intensity at high momentum. The agreement between the measured and calculated curves is consistent with the hypothesis that the 2eV spectra correspond to the Doppler broadened spectra from the thin overlayer of Graphene (which we anticipate should be similar to the spectra obtained from bulk graphite) and that the spectra taken at 20 keV corresponds to bulk Cu due to the fact that most of the positrons implanted at this energy annihilate in the Cu substrate. The results taken at 2 eV provide evidence that it is possible to obtain chemically sensitive information from the top atomic layers of surfaces (both internal and external) from an analysis of the high momentum tail of the Doppler broadened gamma spectra obtained from the annihilation of positrons at the surface.Comment: Presented at 18th International Conference on Positron Annihilation, August 19-24, 2018 | Orlando, USA. The following article has been accepted by AIP Conference Proceedings. After it is published, it will be found at https://aip.scitation.org/journal/ap

    Measurement and analysis of the Doppler broadened energy spectra of annihilation gamma radiation originating from clean and adsorbate-covered surfaces

    Full text link
    We present measurements and theoretical modeling demonstrating the capability of Doppler Broadened annihilation gamma Spectroscopy (DBS) to provide element-specific information from the topmost atomic layer of surfaces that are either clean or covered with adsorbates or thin films. Our measurements show that the energy spectra of Doppler-shifted annihilation gamma photons emitted following the annihilation of positrons from the topmost atomic layers of clean gold (Au) and copper (Cu) differ significantly. With the aid of the positron annihilation-induced Auger electron spectroscopy (PAES) performed simultaneously with DBS, we show that measurable differences between the Doppler broadened gamma spectra from Au and Cu surfaces in the high energy region of the gamma spectra can be used for the quantification of surface chemical composition. Modeling the measured Doppler spectra from clean Au and Cu surfaces using gamma spectra obtained from ab initio calculations after considering the detector energy resolution and surface positronium formation pointed to an increase in the relative contribution of gamma from positron annihilation with valence shell electrons. The fit result also suggests that the surface-trapped positrons predominantly annihilated with the delocalized valence shell (s and p) electrons that extended into the vacuum as compared to the highly localized d electrons. Simultaneous DBS and PAES measurements from adsorbate (sulfur, oxygen, carbon) or thin film (selenium (Se), graphene) covered Cu surface showed that it is possible to distinguish and quantify the surface adsorbate and thin-film composition just based on DBS. DBS of elemental surfaces presents a promising avenue for developing a characterization tool that can be used to probe external and internal surfaces that are inaccessible by conventional surface science techniques
    • …
    corecore