183 research outputs found
On the topology of stationary black holes
We prove that the domain of outer communication of a stationary, globally
hyperbolic spacetime satisfying the null energy condition must be simply
connected. Under suitable additional hypotheses, this implies, in particular,
that each connected component of a cross-section of the event horizon of a
stationary black hole must have spherical topology.Comment: 7 pages, Late
All electro--vacuum Majumdar--Papapetrou space--times with nonsingular black holes
We show that all Majumdar--Papapetrou electrovacuum space--times with a
non--empty black hole region and with a non--singular domain of outer
communications are the standard Majumdar--Papapetrou space--times.Comment: 9 pages, Late
The classification of static vacuum space-times containing an asymptotically flat spacelike hypersurface with compact interior
We prove non-existence of static, vacuum, appropriately regular,
asymptotically flat black hole space-times with degenerate (not necessarily
connected) components of the event horizon. This finishes the classification of
static, vacuum, asymptotically flat domains of outer communication in an
appropriate class of space-times, showing that the domains of outer
communication of the Schwarzschild black holes exhaust the space of
appropriately regular black hole exteriors.Comment: This version includes an addendum with a corrected proof of
non-existence of zeros of the Killing vector at degenerate horizons. A
problem with yet another Lemma is pointed out; this problem does not arise if
one assumes analyticity of the metric. An alternative solution, that does not
require analyticity, has been given in arXiv:1004.0513 [gr-qc] under
appropriate global condition
On completeness of orbits of Killing vector fields
A Theorem is proved which reduces the problem of completeness of orbits of
Killing vector fields in maximal globally hyperbolic, say vacuum, space--times
to some properties of the orbits near the Cauchy surface. In particular it is
shown that all Killing orbits are complete in maximal developements of
asymptotically flat Cauchy data, or of Cauchy data prescribed on a compact
manifold. This result gives a significant strengthening of the uniqueness
theorems for black holes.Comment: 16 pages, Latex, preprint NSF-ITP-93-4
On the uniqueness of smooth, stationary black holes in vacuum
We prove a conditional "no hair" theorem for smooth manifolds: if is the
domain of outer communication of a smooth, regular, stationary Einstein vacuum,
and if a technical condition relating the Ernst potential and Killing scalar is
satisfied on the bifurcate sphere, then is locally isometric to the domain
of outer communication of a Kerr space-time.Comment: Various correction
Einstein-Maxwell gravitational instantons and five dimensional solitonic strings
We study various aspects of four dimensional Einstein-Maxwell multicentred
gravitational instantons. These are half-BPS Riemannian backgrounds of minimal
N=2 supergravity, asymptotic to R^4, R^3 x S^1 or AdS_2 x S^2. Unlike for the
Gibbons-Hawking solutions, the topology is not restricted by boundary
conditions. We discuss the classical metric on the instanton moduli space. One
class of these solutions may be lifted to causal and regular multi `solitonic
strings', without horizons, of 4+1 dimensional N=2 supergravity, carrying null
momentum.Comment: 1+30 page
The Cosmic Censor Forbids Naked Topology
For any asymptotically flat spacetime with a suitable causal structure
obeying (a weak form of) Penrose's cosmic censorship conjecture and satisfying
conditions guaranteeing focusing of complete null geodesics, we prove that
active topological censorship holds. We do not assume global hyperbolicity, and
therefore make no use of Cauchy surfaces and their topology. Instead, we
replace this with two underlying assumptions concerning the causal structure:
that no compact set can signal to arbitrarily small neighbourhoods of spatial
infinity (``-avoidance''), and that no future incomplete null geodesic is
visible from future null infinity. We show that these and the focusing
condition together imply that the domain of outer communications is simply
connected. Furthermore, we prove lemmas which have as a consequence that if a
future incomplete null geodesic were visible from infinity, then given our
-avoidance assumption, it would also be visible from points of spacetime
that can communicate with infinity, and so would signify a true naked
singularity.Comment: To appear in CQG, this improved version contains minor revisions to
incorporate referee's suggestions. Two revised references. Plain TeX, 12
page
A Mass Bound for Spherically Symmetric Black Hole Spacetimes
Requiring that the matter fields are subject to the dominant energy
condition, we establish the lower bound for the
total mass of a static, spherically symmetric black hole spacetime. ( and denote the area and the surface gravity of the horizon,
respectively.) Together with the fact that the Komar integral provides a simple
relation between and the strong energy condition,
this enables us to prove that the Schwarzschild metric represents the only
static, spherically symmetric black hole solution of a selfgravitating matter
model satisfying the dominant, but violating the strong energy condition for
the timelike Killing field at every point, that is, .
Applying this result to scalar fields, we recover the fact that the only black
hole configuration of the spherically symmetric Einstein-Higgs model with
arbitrary non-negative potential is the Schwarzschild spacetime with constant
Higgs field. In the presence of electromagnetic fields, we also derive a
stronger bound for the total mass, involving the electromagnetic potentials and
charges. Again, this estimate provides a simple tool to prove a ``no-hair''
theorem for matter fields violating the strong energy condition.Comment: 16 pages, LATEX, no figure
Asymptotic Conformal Yano--Killing Tensors for Schwarzschild Metric
The asymptotic conformal Yano--Killing tensor proposed in J. Jezierski, On
the relation between metric and spin-2 formulation of linearized Einstein
theory [GRG, in print (1994)] is analyzed for Schwarzschild metric and tensor
equations defining this object are given. The result shows that the
Schwarzschild metric (and other metrics which are asymptotically
``Schwarzschildean'' up to O(1/r^2) at spatial infinity) is among the metrics
fullfilling stronger asymptotic conditions and supertranslations ambiguities
disappear. It is also clear from the result that 14 asymptotic gravitational
charges are well defined on the ``Schwarzschildean'' background.Comment: 8 pages, latex, no figure
- âŠ