183 research outputs found

    On the topology of stationary black holes

    Get PDF
    We prove that the domain of outer communication of a stationary, globally hyperbolic spacetime satisfying the null energy condition must be simply connected. Under suitable additional hypotheses, this implies, in particular, that each connected component of a cross-section of the event horizon of a stationary black hole must have spherical topology.Comment: 7 pages, Late

    All electro--vacuum Majumdar--Papapetrou space--times with nonsingular black holes

    Full text link
    We show that all Majumdar--Papapetrou electrovacuum space--times with a non--empty black hole region and with a non--singular domain of outer communications are the standard Majumdar--Papapetrou space--times.Comment: 9 pages, Late

    The classification of static vacuum space-times containing an asymptotically flat spacelike hypersurface with compact interior

    Get PDF
    We prove non-existence of static, vacuum, appropriately regular, asymptotically flat black hole space-times with degenerate (not necessarily connected) components of the event horizon. This finishes the classification of static, vacuum, asymptotically flat domains of outer communication in an appropriate class of space-times, showing that the domains of outer communication of the Schwarzschild black holes exhaust the space of appropriately regular black hole exteriors.Comment: This version includes an addendum with a corrected proof of non-existence of zeros of the Killing vector at degenerate horizons. A problem with yet another Lemma is pointed out; this problem does not arise if one assumes analyticity of the metric. An alternative solution, that does not require analyticity, has been given in arXiv:1004.0513 [gr-qc] under appropriate global condition

    On completeness of orbits of Killing vector fields

    Get PDF
    A Theorem is proved which reduces the problem of completeness of orbits of Killing vector fields in maximal globally hyperbolic, say vacuum, space--times to some properties of the orbits near the Cauchy surface. In particular it is shown that all Killing orbits are complete in maximal developements of asymptotically flat Cauchy data, or of Cauchy data prescribed on a compact manifold. This result gives a significant strengthening of the uniqueness theorems for black holes.Comment: 16 pages, Latex, preprint NSF-ITP-93-4

    On the uniqueness of smooth, stationary black holes in vacuum

    Full text link
    We prove a conditional "no hair" theorem for smooth manifolds: if EE is the domain of outer communication of a smooth, regular, stationary Einstein vacuum, and if a technical condition relating the Ernst potential and Killing scalar is satisfied on the bifurcate sphere, then EE is locally isometric to the domain of outer communication of a Kerr space-time.Comment: Various correction

    Einstein-Maxwell gravitational instantons and five dimensional solitonic strings

    Get PDF
    We study various aspects of four dimensional Einstein-Maxwell multicentred gravitational instantons. These are half-BPS Riemannian backgrounds of minimal N=2 supergravity, asymptotic to R^4, R^3 x S^1 or AdS_2 x S^2. Unlike for the Gibbons-Hawking solutions, the topology is not restricted by boundary conditions. We discuss the classical metric on the instanton moduli space. One class of these solutions may be lifted to causal and regular multi `solitonic strings', without horizons, of 4+1 dimensional N=2 supergravity, carrying null momentum.Comment: 1+30 page

    The Cosmic Censor Forbids Naked Topology

    Get PDF
    For any asymptotically flat spacetime with a suitable causal structure obeying (a weak form of) Penrose's cosmic censorship conjecture and satisfying conditions guaranteeing focusing of complete null geodesics, we prove that active topological censorship holds. We do not assume global hyperbolicity, and therefore make no use of Cauchy surfaces and their topology. Instead, we replace this with two underlying assumptions concerning the causal structure: that no compact set can signal to arbitrarily small neighbourhoods of spatial infinity (``i0i^0-avoidance''), and that no future incomplete null geodesic is visible from future null infinity. We show that these and the focusing condition together imply that the domain of outer communications is simply connected. Furthermore, we prove lemmas which have as a consequence that if a future incomplete null geodesic were visible from infinity, then given our i0i^0-avoidance assumption, it would also be visible from points of spacetime that can communicate with infinity, and so would signify a true naked singularity.Comment: To appear in CQG, this improved version contains minor revisions to incorporate referee's suggestions. Two revised references. Plain TeX, 12 page

    A Mass Bound for Spherically Symmetric Black Hole Spacetimes

    Get PDF
    Requiring that the matter fields are subject to the dominant energy condition, we establish the lower bound (4π)−1ÎșA(4\pi)^{-1} \kappa {\cal A} for the total mass MM of a static, spherically symmetric black hole spacetime. (A{\cal A} and Îș\kappa denote the area and the surface gravity of the horizon, respectively.) Together with the fact that the Komar integral provides a simple relation between M−(4π)−1ÎșAM - (4\pi)^{-1} \kappa A and the strong energy condition, this enables us to prove that the Schwarzschild metric represents the only static, spherically symmetric black hole solution of a selfgravitating matter model satisfying the dominant, but violating the strong energy condition for the timelike Killing field KK at every point, that is, R(K,K)≀0R(K,K) \leq 0. Applying this result to scalar fields, we recover the fact that the only black hole configuration of the spherically symmetric Einstein-Higgs model with arbitrary non-negative potential is the Schwarzschild spacetime with constant Higgs field. In the presence of electromagnetic fields, we also derive a stronger bound for the total mass, involving the electromagnetic potentials and charges. Again, this estimate provides a simple tool to prove a ``no-hair'' theorem for matter fields violating the strong energy condition.Comment: 16 pages, LATEX, no figure

    Asymptotic Conformal Yano--Killing Tensors for Schwarzschild Metric

    Get PDF
    The asymptotic conformal Yano--Killing tensor proposed in J. Jezierski, On the relation between metric and spin-2 formulation of linearized Einstein theory [GRG, in print (1994)] is analyzed for Schwarzschild metric and tensor equations defining this object are given. The result shows that the Schwarzschild metric (and other metrics which are asymptotically ``Schwarzschildean'' up to O(1/r^2) at spatial infinity) is among the metrics fullfilling stronger asymptotic conditions and supertranslations ambiguities disappear. It is also clear from the result that 14 asymptotic gravitational charges are well defined on the ``Schwarzschildean'' background.Comment: 8 pages, latex, no figure
    • 

    corecore