15 research outputs found

    Indications and Early Outcomes for Total Pancreatectomy at a High-Volume Pancreas Center

    Get PDF
    Background. This study aimed to analyse the most common current indications for total pancreatectomy (TP) at a high-volume pancreas center. Method. Prospectively collected data on indications and short-term outcome of all TP's performed from January 2004 until June 2008 were analysed. Results. The total pancreatectomies (TP) were 63, i.e., 6.7% of all pancreatic procedures (n = 948). Indications for TP were classified into 4 groups: tumors of advanced stage, n = 23 (36.5%), technical problems due to soft pancreatic tissue, n = 18 (28.6%), troubles due to perioperative surgical complications, n = 15 (23.8%), and therapy-resistant pain due to chronic pancreatitis, n = 7 (11.1%). Surgical complications occurred in 23 patients (36.5%). The mortality in elective TP was 6.25%. Median postoperative stay was 21 days. Mortality, morbidity and the other perioperative parameters differed substantially according to the indication for pancreatectomy. Conclusion. Total pancreatectomy is definitely indicated for a limited range of elective and emergency situations. Indications can be: size or localisation of pancreatic tumor, trouble, technical diffuculties and therapy-refractory pain in chronic pancreatitis. A TP due to perioperative complications (troubles) after pancreatic resections is doomed by extremely high morbidity and mortality and should be avoided

    Comparative analysis of cell death induction by Taurolidine in different malignant human cancer cell lines

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Taurolidine (TRD) represents an anti-infective substance with anti-neoplastic activity in many malignant cell lines. So far, the knowledge about the cell death inducing mechanisms and pathways activated by TRD is limited. The aim of this study was therefore, to perform a comparative analysis of cell death induction by TRD simultaneously in different malignant cell lines.</p> <p>Materials and methods</p> <p>Five different malignant cell lines (HT29/Colon, Chang Liver/Liver, HT1080/fibrosarcoma, AsPC-1/pancreas and BxPC-3/pancreas) were incubated with increasing concentrations of TRD (100 μM, 250 μM and 1000 μM) for 6 h and 24 h. Cell viability, apoptosis and necrosis were analyzed by FACS analysis (Propidiumiodide/AnnexinV staining). Additionally, cells were co-incubated with the caspase Inhibitor z-VAD, the radical scavenger N-Acetylcystein (NAC) and the Gluthation depleting agent BSO to examine the contribution of caspase activation and reactive oxygen species in TRD induced cell death.</p> <p>Results</p> <p>All cell lines were susceptible to TRD induced cell death without resistance toward this anti-neoplastic agent. However, the dose response effects were varying largely between different cell lines. The effect of NAC and BSO co-treatment were highly different among cell lines - suggesting a cell line specific involvement of ROS in TRD induced cell death. Furthermore, impact of z-VAD mediated inhibition of caspases was differing strongly among the cell lines.</p> <p>Conclusion</p> <p>This is the first study providing a simultaneous evaluation of the anti-neoplastic action of TRD across several malignant cell lines. The involvement of ROS and caspase activation was highly variable among the five cell lines, although all were susceptible to TRD induced cell death. Our results indicate, that TRD is likely to provide multifaceted cell death mechanisms leading to a cell line specific diversity.</p

    TRAIL and Taurolidine induce apoptosis and decrease proliferation in human fibrosarcoma

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Disseminated soft tissue sarcoma still represents a therapeutic dilemma because effective cytostatics are missing. Therefore we tested TRAIL and Tarolidine (TRD), two substances with apoptogenic properties on human fibrosarcoma (HT1080).</p> <p>Methods</p> <p>Viability, apoptosis and necrosis were visualized by TUNEL-Assay and quantitated by FACS analysis (Propidiumiodide/AnnexinV staining). Gene expression was analysed by RNA-Microarray and the results validated for selected genes by rtPCR. Protein level changes were documented by Western Blot analysis. NFKB activity was analysed by ELISA and proliferation assays (BrdU) were performed.</p> <p>Results and discussion</p> <p>The single substances TRAIL and TRD induced apoptotic cell death and decreased proliferation in HT1080 cells significantly. Gene expression of several genes related to apoptotic pathways (TRAIL: <it>ARHGDIA</it>, <it>NFKBIA</it>, <it>TNFAIP3</it>; TRD: <it>HSPA1A/B</it>, <it>NFKBIA</it>, <it>GADD45A</it>, <it>SGK</it>, <it>JUN</it>, <it>MAP3K14</it>) was changed. The combination of TRD and TRAIL significantly increased apoptotic cell death compared to the single substances and lead to expression changes in a variety of genes (<it>HSPA1A/B</it>, <it>NFKBIA</it>, <it>PPP1R15A</it>, <it>GADD45A</it>, <it>AXL</it>, <it>SGK</it>, <it>DUSP1</it>, <it>JUN</it>, <it>IRF1</it>, <it>MYC</it>, <it>BAG5</it>, <it>BIRC3</it>). NFKB activity assay revealed an antipodal regulation of the several subunits of NFKB by TRD and TRD+TRAIL compared to TRAIL alone.</p> <p>Conclusion</p> <p>TRD and TRAIL are effective to induce apoptosis and decrease proliferation in human fibrosarcoma. A variety of genes seems to be involved, pointing to the NFKB pathway as key regulator in TRD/TRAIL-mediated apoptosis.</p

    Gene expression analysis of cell death induction by Taurolidine in different malignant cell lines

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The anti-infective agent Taurolidine (TRD) has been shown to have cell death inducing properties, but the mechanism of its action is largely unknown. The aim of this study was to identify potential common target genes modulated at the transcriptional level following TRD treatment in tumour cell lines originating from different cancer types.</p> <p>Methods</p> <p>Five different malignant cell lines (HT29, Chang Liver, HT1080, AsPC-1 and BxPC-3) were incubated with TRD (100 μM, 250 μM and 1000 μM). Proliferation after 8 h and cell viability after 24 h were analyzed by BrdU assay and FACS analysis, respectively. Gene expression analyses were carried out using the <it>Agilent </it>-microarray platform to indentify genes which displayed conjoint regulation following the addition of TRD in all cell lines. Candidate genes were subjected to <it>Ingenuity Pathways Analysis </it>and selected genes were validated by qRT-PCR and Western Blot.</p> <p>Results</p> <p>TRD 250 μM caused a significant inhibition of proliferation as well as apoptotic cell death in all cell lines. Among cell death associated genes with the strongest regulation in gene expression, we identified pro-apoptotic transcription factors (EGR1, ATF3) as well as genes involved in the ER stress response (PPP1R15A), in ubiquitination (TRAF6) and mitochondrial apoptotic pathways (PMAIP1).</p> <p>Conclusions</p> <p>This is the first conjoint analysis of potential target genes of TRD which was performed simultaneously in different malignant cell lines. The results indicate that TRD might be involved in different signal transduction pathways leading to apoptosis.</p

    The JNK Inhibitor XG-102 Protects against TNBS-Induced Colitis

    Get PDF
    The c-Jun N-terminal kinase (JNK)-inhibiting peptide D-JNKI-1, syn. XG-102 was tested for its therapeutic potential in acute inflammatory bowel disease (IBD) in mice. Rectal instillation of the chemical irritant trinitrobenzene sulfonic acid (TNBS) provoked a dramatic acute inflammation in the colon of 7–9 weeks old mice. Coincident subcutaneous application of 100 µg/kg XG-102 significantly reduced the loss of body weight, rectal bleeding and diarrhoea. After 72 h, the end of the study, the colon was removed and immuno-histochemically analysed. XG-102 significantly reduced (i) pathological changes such as ulceration or crypt deformation, (ii) immune cell pathology such as infiltration and presence of CD3- and CD68-positive cells, (iii) the production of tumor necrosis factor (TNF)-α in colon tissue cultures from TNBS-treated mice, (iv) expression of Bim, Bax, FasL, p53, and activation of caspase 3, (v) complexation of JNK2 and Bim, and (vi) expression and activation of the JNK substrate and transcription factor c-Jun. A single application of subcutaneous XG-102 was at least as effective or even better depending on the outcome parameter as the daily oral application of sulfasalazine used for treatment of IBD
    corecore