15 research outputs found

    Sex-Specific Effects of Nanoparticle-Encapsulated MitoQ (nMitoQ) Delivery to the Placenta in a Rat Model of Fetal Hypoxia

    Get PDF
    Pregnancy complications associated with chronic fetal hypoxia have been linked to the development of adult cardiovascular disease in the offspring. Prenatal hypoxia has been shown to increase placental oxidative stress and impair placental function in a sex-specific manner, thereby affecting fetal development. As oxidative stress is central to placental dysfunction, we developed a placenta-targeted treatment strategy using the antioxidant MitoQ encapsulated into nanoparticles (nMitoQ) to reduce placental oxidative/nitrosative stress and improve placental function without direct drug exposure to the fetus in order to avoid off-target effects during development. We hypothesized that, in a rat model of prenatal hypoxia, nMitoQ prevents hypoxia-induced placental oxidative/nitrosative stress, promotes angiogenesis, improves placental morphology, and ultimately improves fetal oxygenation. Additionally, we assessed whether there were sex differences in the effectiveness of nMitoQ treatment. Pregnant rats were intravenously injected with saline or nMitoQ (100 μl of 125 μM) on gestational day (GD) 15 and exposed to either normoxia (21% O2) or hypoxia (11% O2) from GD15 to 21. On GD21, placentae from both sexes were collected for detection of superoxide, nitrotyrosine, nitric oxide, CD31 (endothelial cell marker), and fetal blood spaces, Vegfa and Igf2 mRNA expression in the placental labyrinth zone. Prenatal hypoxia decreased male fetal weight, which was not changed by nMitoQ treatment; however, placental efficiency (fetal/placental weight ratio) decreased by hypoxia and was increased by nMitoQ in both males and females. nMitoQ treatment reduced the prenatal hypoxia-induced increase in placental superoxide levels in both male and female placentae but improved oxygenation in only female placentae. Nitrotyrosine levels were increased in hypoxic female placentae and were reduced by nMitoQ. Prenatal hypoxia reduced placental Vegfa and Igf2 expression in both sexes, while nMitoQ increased Vegfa and Igf2 expression only in hypoxic female placentae. In summary, our study suggests that nMitoQ treatment could be pursued as a potential preventative strategy against placental oxidative stress and programming of adult cardiovascular disease in offspring exposed to hypoxia in utero. However, sex differences need to be taken into account when developing therapeutic strategies to improve fetal development in complicated pregnancies, as nMitoQ treatment was more effective in placentae from females than males

    Treating the placenta to prevent adverse effects of gestational hypoxia on fetal brain development.

    Get PDF
    Some neuropsychiatric disease, including schizophrenia, may originate during prenatal development, following periods of gestational hypoxia and placental oxidative stress. Here we investigated if gestational hypoxia promotes damaging secretions from the placenta that affect fetal development and whether a mitochondria-targeted antioxidant MitoQ might prevent this. Gestational hypoxia caused low birth-weight and changes in young adult offspring brain, mimicking those in human neuropsychiatric disease. Exposure of cultured neurons to fetal plasma or to secretions from the placenta or from model trophoblast barriers that had been exposed to altered oxygenation caused similar morphological changes. The secretions and plasma contained altered microRNAs whose targets were linked with changes in gene expression in the fetal brain and with human schizophrenia loci. Molecular and morphological changes in vivo and in vitro were prevented by a single dose of MitoQ bound to nanoparticles, which were shown to localise and prevent oxidative stress in the placenta but not in the fetus. We suggest the possibility of developing preventative treatments that target the placenta and not the fetus to reduce risk of psychiatric disease in later life

    The effect of tauroursodeoxycholic Acid (TUDCA) treatment on placental endoplasmic reticulum (ER) stress in a rat model of advanced maternal age

    No full text
    Advanced maternal age (≥35 years) is associated with an increased risk of pregnancy complications such as fetal growth restriction and preeclampsia. We previously demonstrated poor pregnancy outcomes (reduced fetal body weight), altered vascular function, and increased expression of endoplasmic reticulum (ER) stress markers (phospho-eIF2α and CHOP) in mesenteric arteries from a rat model of advanced maternal age. Further, treatment of aged dams during pregnancy with an ER stress inhibitor, tauroursodeoxycholic acid (TUDCA) increased fetal body weight (both male and female), tended to improve uterine artery function, and reduced expression of phospho-eIF2α and CHOP in systemic arteries. Placental ER stress has been linked to poor pregnancy outcomes in complicated pregnancies but whether placental ER stress is evident in advanced maternal age is not known. In addition, sex-specific changes in the placental labyrinth and junctional zones from male and female offspring in advanced maternal age have not been investigated. Therefore, the current study aimed to investigate the effect of TUDCA intervention on placental ER stress. We hypothesize that placental ER stress is increased in a rat model of advanced maternal age that is alleviated by TUDCA intervention for both sexes. Placental ER stress markers (GRP78, phospho-eIF2α, ATF-4, CHOP, ATF-6α, and sXBP-1) were quantified by Western blot in placentas from male and female offspring; the labyrinth and junction zones were analyzed separately. In the placental labyrinth zone from male offspring, only GRP78 (p = 0.007) was increased in aged dams compared to young dams; TUDCA treatment reduced the placental expression of GRP78 in aged dams (p = 0.003). In addition, TUDCA reduced the levels of phospho-eIF2α (p = 0.021), ATF-4 (p = 0.016), and CHOP (p = 0.012) in aged dams but no effect was observed in young TUDCA-treated dams. In the placental labyrinth zone from female offspring, an increased level of phospho-eIF2α (p = 0.005) was observed in aged dams compared to young dams, and TUDCA treatment had no effect in both young and aged groups. In the placental junctional zone from male and female offspring, no changes in the expression of GRP78, phospho-eIF2α, ATF-4, CHOP, and ATF-6α was observed with or without TUDCA treatment in both young and aged groups, however, a reduced expression of sXBP-1 protein was observed in from both male (p = 0.001) and female (p = 0.031) placentas from aged-TUDCA treated dams compared to aged control. In conclusion, our data highlight the complexity and sex-specificity of ER stress responses in advanced maternal age with TUDCA treatment maintaining ER stress proteins to basal levels and improving fetal growth in both male and female offspring

    Advanced Maternal Age Impairs Uterine Artery Adaptations to Pregnancy in Rats

    No full text
    Advanced maternal age (≥35 years) is associated with pregnancy complications. Aging impairs vascular reactivity and increases vascular stiffness. We hypothesized that uterine artery adaptations to pregnancy are impaired with advanced age. Uterine arteries of nonpregnant and pregnant (gestational day 20) young (4 months) and aged (9 months; ~35 years in humans) Sprague-Dawley rats were isolated. Functional (myogenic tone, n = 6–10/group) and mechanical (circumferential stress-strain, n = 10–24/group) properties were assessed using pressure myography and further assessment of elastin and collagen (histology, n = 4–6/group), and matrix metalloproteinase-2 (MMP-2, zymography, n = 6/group). Aged dams had worse pregnancy outcomes, including smaller litters and fetal weights (both p < 0.0001). Only in arteries of pregnant young dams did higher pressures (>100 mmHg) cause forced vasodilation. Across the whole pressure range (4–160 mmHg), myogenic behavior was enhanced in aged vs. young pregnant dams (p = 0.0010). Circumferential stress and strain increased with pregnancy in young and aged dams (p < 0.0001), but strain remained lower in aged vs. young dams (p < 0.05). Arteries from young nonpregnant rats had greater collagen:elastin ratios than the other groups (p < 0.05). In aged rats only, pregnancy increased MMP-2 active capacity. Altered functional and structural vascular adaptations to pregnancy may impair fetal growth and development with advanced maternal age
    corecore