124 research outputs found

    Production, Persistence and Diversity of Species in Temperate Grasslands

    Get PDF
    Temperate grassland areas are considered to be semi-arid, with rainfall typically between 250 and 500 mm, much of it occurring in the late spring and early summer. Grazing plays an important role in all these grasslands with impacts on diversity and persistence. Against this assumption that seasonal productivity would be more uniform within a pasture that was diverse, the research suggested that species rich pastures were less stable, because this species richness was composed of non-perennial, volunteer and weed species. This paper explores the concept that systems diversity of temperate grassland does not always equate to production. In these systems the functional role of perennial grasses is important both for the productive capacity and protection of soil through the maintenance of cover, hence represents the key element which needs to be preserved through management strategies

    Longitudinal-Transverse Separations of Structure Functions at Low Q2Q^{2} for Hydrogen and Deuterium

    Get PDF
    We report on a study of the longitudinal to transverse cross section ratio, R=σL/σTR=\sigma_L/\sigma_T, at low values of xx and Q2Q^{2}, as determined from inclusive inelastic electron-hydrogen and electron-deuterium scattering data from Jefferson Lab Hall C spanning the four-momentum transfer range 0.06 <Q2<2.8 < Q^{2} < 2.8 GeV2^{2}. Even at the lowest values of Q2Q^{2}, RR remains nearly constant and does not disappear with decreasing Q2Q^{2}, as expected. We find a nearly identical behaviour for hydrogen and deuterium.Comment: 4 pages, 2 gigure

    Measurements of electron-proton elastic cross sections for 0.4<Q2<5.5(GeV/c)20.4 < Q^2 < 5.5 (GeV/c)^2

    Full text link
    We report on precision measurements of the elastic cross section for electron-proton scattering performed in Hall C at Jefferson Lab. The measurements were made at 28 unique kinematic settings covering a range in momentum transfer of 0.4 << Q2Q^2 << 5.5 (GeV/c)2(\rm GeV/c)^2. These measurements represent a significant contribution to the world's cross section data set in the Q2Q^2 range where a large discrepancy currently exists between the ratio of electric to magnetic proton form factors extracted from previous cross section measurements and that recently measured via polarization transfer in Hall A at Jefferson Lab.Comment: 17 pages, 18 figures; text added, some figures replace

    Charged pion form factor between Q2Q^2=0.60 and 2.45 GeV2^2. I. Measurements of the cross section for the 1{^1}H(e,eπ+e,e'\pi^+)nn reaction

    Full text link
    Cross sections for the reaction 1{^1}H(e,eπ+e,e'\pi^+)nn were measured in Hall C at Thomas Jefferson National Accelerator Facility (JLab) using the CEBAF high-intensity, continous electron beam in order to determine the charged pion form factor. Data were taken for central four-momentum transfers ranging from Q2Q^2=0.60 to 2.45 GeV2^2 at an invariant mass of the virtual photon-nucleon system of WW=1.95 and 2.22 GeV. The measured cross sections were separated into the four structure functions σL\sigma_L, σT\sigma_T, σLT\sigma_{LT}, and σTT\sigma_{TT}. The various parts of the experimental setup and the analysis steps are described in detail, including the calibrations and systematic studies, which were needed to obtain high precision results. The different types of systematic uncertainties are also discussed. The results for the separated cross sections as a function of the Mandelstam variable tt at the different values of Q2Q^2 are presented. Some global features of the data are discussed, and the data are compared with the results of some model calculations for the reaction 1{^1}H(e,eπ+e,e'\pi^+)nn.Comment: 26 pages, 23 figure

    Separated Response Function Ratios in Exclusive, Forward pi^{+/-} Electroproduction

    Full text link
    The study of exclusive π±\pi^{\pm} electroproduction on the nucleon, including separation of the various structure functions, is of interest for a number of reasons. The ratio RL=σLπ/σLπ+R_L=\sigma_L^{\pi^-}/\sigma_L^{\pi^+} is sensitive to isoscalar contamination to the dominant isovector pion exchange amplitude, which is the basis for the determination of the charged pion form factor from electroproduction data. A change in the value of RT=σTπ/σTπ+R_T=\sigma_T^{\pi^-}/\sigma_T^{\pi^+} from unity at small t-t, to 1/4 at large t-t, would suggest a transition from coupling to a (virtual) pion to coupling to individual quarks. Furthermore, the mentioned ratios may show an earlier approach to pQCD than the individual cross sections. We have performed the first complete separation of the four unpolarized electromagnetic structure functions above the dominant resonances in forward, exclusive π±\pi^{\pm} electroproduction on the deuteron at central Q2Q^2 values of 0.6, 1.0, 1.6 GeV2^2 at WW=1.95 GeV, and Q2=2.45Q^2=2.45 GeV2^2 at WW=2.22 GeV. Here, we present the LL and TT cross sections, with emphasis on RLR_L and RTR_T, and compare them with theoretical calculations. Results for the separated ratio RLR_L indicate dominance of the pion-pole diagram at low t-t, while results for RTR_T are consistent with a transition between pion knockout and quark knockout mechanisms.Comment: 6 pages, 3 figure

    Charged pion form factor between Q^2=0.60 and 2.45 GeV^2. II. Determination of, and results for, the pion form factor

    Get PDF
    The charged pion form factor, Fpi(Q^2), is an important quantity which can be used to advance our knowledge of hadronic structure. However, the extraction of Fpi from data requires a model of the 1H(e,e'pi+)n reaction, and thus is inherently model dependent. Therefore, a detailed description of the extraction of the charged pion form factor from electroproduction data obtained recently at Jefferson Lab is presented, with particular focus given to the dominant uncertainties in this procedure. Results for Fpi are presented for Q^2=0.60-2.45 GeV^2. Above Q^2=1.5 GeV^2, the Fpi values are systematically below the monopole parameterization that describes the low Q^2 data used to determine the pion charge radius. The pion form factor can be calculated in a wide variety of theoretical approaches, and the experimental results are compared to a number of calculations. This comparison is helpful in understanding the role of soft versus hard contributions to hadronic structure in the intermediate Q^2 regime.Comment: 18 pages, 11 figure
    corecore