34 research outputs found

    1/Nc1/N_c Rotational Corrections to gAg_A in the NJL Model and Charge Conjugation

    Full text link
    We show that the 1/Nc1/N_c rotational corrections to gAg_A, derived using the semiclassical quantization scheme in the NJL model, possess correct properties under charge conjugation.Comment: 4 pages, revtex, no figures, final version published in Phys.Rev.C52(1995)42

    Electromagnetic form factors of the nucleon in the chiral quark soliton model

    Full text link
    In this paper we present the derivation as well as the numerical results for the electromagnetic form factors of the nucleon within the chiral quark soliton model in the semiclassical quantization scheme. The model is based on semibosonized SU(2) Nambu -- Jona-Lasinio lagrangean, where the boson fields are treated as classical ones. Other observables, namely the nucleon mean squared radii, the magnetic moments, and the nucleon--Δ\Delta splitting are calculated as well. The calculations have been done taking into account the quark sea polarization effects. The final results, including rotational 1/Nc1/N_c corrections, are compared with the existing experimental data, and they are found to be in a good agreement for the constituent quark mass of about 420 MeV. The only exception is the neutron electric form factor which is overestimated.Comment: 17 pages, 11 figures added as postscript files (uuencoded), RevTeX format, no special macros, final version to appear in Nucl.Phys.A (1995

    Do we expect light flavor sea-quark asymmetry also for the spin-dependent distribution functions of the nucleon?

    Get PDF
    After taking account of the scale dependence by means of the standard DGLAP evolution equation, the theoretical predictions of the chiral quark soliton model for the unpolarized and longitudinally polarized structure functions of the nucleon are compared with the recent high energy data. The theory is shown to explain all the qualitative features of the experiments, including the NMC data for F2p(x)−F2n(x)F_2^p (x) - F_2^n (x), F2n(x)/F2p(x)F_2^n (x) / F_2^p (x), the Hermes and NuSea data for dˉ(x)−uˉ(x)\bar{d}(x) - \bar{u}(x), the EMC and SMC data for g1p(x)g_1^p(x), g1n(x)g_1^n(x) and g1d(x)g_1^d(x). Among others, flavor asymmetry of the longitudinally polarized sea-quark distributions is a remarkable prediction of this model, i.e., it predicts that Δdˉ(x)−Δuˉ(x)=Cxα[dˉ(x)−uˉ(x)]\Delta \bar{d}(x) - \Delta \bar{u}(x) = C x^{\alpha} [ \bar{d}(x) - \bar{u}(x)] with a sizable negative coefficient C≃−2.0C \simeq -2.0 (and α≃0.12\alpha \simeq 0.12) in qualitative consistency with the recent semi-phenomenological analysis by Morii and Yamanishi.Comment: 14pages, including 5 eps_figures with epsbox.sty, late

    Chiral Symmetry and the Nucleon Structure Functions

    Get PDF
    The isospin asymmetry of the sea quark distribution as well as the unexpectedly small quark spin fraction of the nucleon are two outstanding discoveries recently made in the physics of deep-inelastic structure functions. We evaluate here the corresponding quark distribution functions within the framework of the chiral quark soliton model, which is an effective quark model of baryons maximally incorporating the most important feature of low energy QCD, i.e. the chiral symmetry and its spontaneous breakdown. It is shown that the model can explain qualitative features of the above-mentioned nucleon structure functions within a single framework, thereby disclosing the importance of chiral symmetry in the physics of high energy deep-inelastic scatterings.Comment: 20pages, LaTex, 5 Postscript figures A numerical error of the original version was corrected. The discussion on the regularization dependence of distribution functions has been added. A comparison with the low energy-scale parametrization of Gloeck, Reya and Vogt has been mad

    Magnetic moments of the SU(3) decuplet baryons in the chiral quark-soliton model

    Get PDF
    Magnetic moments of baryons are studied within the chiral quark soliton model with special emphasis on the decuplet of baryons. The model is used to identify all symmetry breaking terms proportional to msm_{\rm s}. Sum rules for the magnetic moments are derived. A ``model-independent'' analysis of the symmetry breaking terms is performed and finally model calculations are presented, which show the importance of the rotational 1/Nc1/N_{\rm c} corrections for cranking of the soliton.Comment: 22 pages, RevTex. The final version accepted for publication in Phys. Rev.
    corecore