22 research outputs found

    β-Glucosidase BGLU42 is a MYB72-dependent key regulator of rhizobacteria-induced systemic resistance and modulates iron deficiency responses in Arabidopsis roots

    No full text
    Selected soil-borne rhizobacteria can trigger an induced systemic resistance (ISR) that is effective against a broad spectrum of pathogens. In Arabidopsis thaliana, the root-specific transcription factor MYB72 is required for the onset of ISR, but is also associated with plant survival under conditions of iron deficiency. Here, we investigated the role of MYB72 in both processes. To identify MYB72 target genes, we analyzed the root transcriptomes of wild-type Col-0, mutant myb72 and complemented 35S:FLAG-MYB72/myb72 plants in response to ISR-inducing Pseudomonas fluorescens WCS417. Five WCS417-inducible genes were misregulated in myb72 and complemented in 35S:FLAG-MYB72/myb72. Amongst these, we uncovered β-glucosidase BGLU42 as a novel component of the ISR signaling pathway. Overexpression of BGLU42 resulted in constitutive disease resistance, whereas the bglu42 mutant was defective in ISR. Furthermore, we found 195 genes to be constitutively upregulated in MYB72-overexpressing roots in the absence of WCS417. Many of these encode enzymes involved in the production of iron-mobilizing phenolic metabolites under conditions of iron deficiency. We provide evidence that BGLU42 is required for their release into the rhizosphere. Together, this work highlights a thus far unidentified link between the ability of beneficial rhizobacteria to stimulate systemic immunity and mechanisms induced by iron deficiency in host plants

    β-Glucosidase BGLU42 is a MYB72-dependent key regulator of rhizobacteria-induced systemic resistance and modulates iron deficiency responses in Arabidopsis roots

    No full text
    Selected soil-borne rhizobacteria can trigger an induced systemic resistance (ISR) that is effective against a broad spectrum of pathogens. In Arabidopsis thaliana, the root-specific transcription factor MYB72 is required for the onset of ISR, but is also associated with plant survival under conditions of iron deficiency. Here, we investigated the role of MYB72 in both processes. To identify MYB72 target genes, we analyzed the root transcriptomes of wild-type Col-0, mutant myb72 and complemented 35S:FLAG-MYB72/myb72 plants in response to ISR-inducing Pseudomonas fluorescens WCS417. Five WCS417-inducible genes were misregulated in myb72 and complemented in 35S:FLAG-MYB72/myb72. Amongst these, we uncovered β-glucosidase BGLU42 as a novel component of the ISR signaling pathway. Overexpression of BGLU42 resulted in constitutive disease resistance, whereas the bglu42 mutant was defective in ISR. Furthermore, we found 195 genes to be constitutively upregulated in MYB72-overexpressing roots in the absence of WCS417. Many of these encode enzymes involved in the production of iron-mobilizing phenolic metabolites under conditions of iron deficiency. We provide evidence that BGLU42 is required for their release into the rhizosphere. Together, this work highlights a thus far unidentified link between the ability of beneficial rhizobacteria to stimulate systemic immunity and mechanisms induced by iron deficiency in host plants

    Type III secretion system of beneficial rhizobacteria Pseudomonas simiae WCS417 and Pseudomonas defensor WCS374

    No full text
    Plants roots host myriads of microbes, some of which enhance the defense potential of plants by activating a broad-spectrum immune response in leaves, known as induced systemic resistance (ISR). Nevertheless, establishment of this mutualistic interaction requires active suppression of local root immune responses to allow successful colonization. To facilitate host colonization, phytopathogenic bacteria secrete immune-suppressive effectors into host cells via the type III secretion system (T3SS). Previously, we searched the genomes of the ISR-inducing rhizobacteria Pseudomonas simiae WCS417 and Pseudomonas defensor WCS374 for the presence of a T3SS and identified the components for a T3SS in the genomes of WCS417 and WCS374. By performing a phylogenetic and gene cluster alignment analysis we show that the T3SS of WCS417 and WCS374 are grouped in a clade that is enriched for beneficial rhizobacteria. We also found sequences of putative novel effectors in their genomes, which may facilitate future research on the role of T3SS effectors in plant-beneficial microbe interactions in the rhizosphere

    Type III secretion system of beneficial rhizobacteria Pseudomonas simiae WCS417 and Pseudomonas defensor WCS374

    No full text
    Plants roots host myriads of microbes, some of which enhance the defense potential of plants by activating a broad-spectrum immune response in leaves, known as induced systemic resistance (ISR). Nevertheless, establishment of this mutualistic interaction requires active suppression of local root immune responses to allow successful colonization. To facilitate host colonization, phytopathogenic bacteria secrete immune-suppressive effectors into host cells via the type III secretion system (T3SS). Previously, we searched the genomes of the ISR-inducing rhizobacteria Pseudomonas simiae WCS417 and Pseudomonas defensor WCS374 for the presence of a T3SS and identified the components for a T3SS in the genomes of WCS417 and WCS374. By performing a phylogenetic and gene cluster alignment analysis we show that the T3SS of WCS417 and WCS374 are grouped in a clade that is enriched for beneficial rhizobacteria. We also found sequences of putative novel effectors in their genomes, which may facilitate future research on the role of T3SS effectors in plant-beneficial microbe interactions in the rhizosphere

    Induced Systemic Resistance and the Rhizosphere Microbiome

    No full text
    Microbial communities that are associated with plant roots are highly diverse and harbor tens of thousands of species. This so-called microbiome controls plant health through several mechanisms including the suppression of infectious diseases, which is especially prominent in disease suppressive soils. The mechanisms implicated in disease suppression include competition for nutrients, antibiosis, and induced systemic resistance (ISR). For many biological control agents ISR has been recognized as the mechanism that at least partly explains disease suppression. Implications of ISR on recruitment and functioning of the rhizosphere microbiome are discussed

    Emerging Roles of Epigenetics in Grapevine and Winegrowing

    No full text
    Epigenetics refers to dynamic chemical modifications to the genome that can perpetuate gene activity without changes in the DNA sequence. Epigenetic mechanisms play important roles in growth and development. They may also drive plant adaptation to adverse environmental conditions by buffering environmental variation. Grapevine is an important perennial fruit crop cultivated worldwide, but mostly in temperate zones with hot and dry summers. The decrease in rainfall and the rise in temperature due to climate change, along with the expansion of pests and diseases, constitute serious threats to the sustainability of winegrowing. Ongoing research shows that epigenetic modifications are key regulators of important grapevine developmental processes, including berry growth and ripening. Variations in epigenetic modifications driven by genotype–environment interplay may also lead to novel phenotypes in response to environmental cues, a phenomenon called phenotypic plasticity. Here, we summarize the recent advances in the emerging field of grapevine epigenetics. We primarily highlight the impact of epigenetics to grapevine stress responses and acquisition of stress tolerance. We further discuss how epigenetics may affect winegrowing and also shape the quality of wine

    Root transcriptional dynamics induced by beneficial rhizobacteria and microbial immune elicitors reveal signatures of adaptation to mutualists

    No full text
    Below ground, microbe-associated molecular patterns (MAMPs) of root-associated microbiota can trigger costly defenses at the expense of plant growth. However, beneficial rhizobacteria, such as Pseudomonas simiae WCS417, promote plant growth and induce systemic resistance without being warded off by local root immune responses. To investigate early root responses that facilitate WCS417 to exert its plant-beneficial functions, we performed time series RNA-Seq of Arabidopsis roots in response to live WCS417 and compared it with MAMPs flg22(417) (from WCS417), flg22(Pa) (from pathogenic Pseudomonas aeruginosa) and fungal chitin. The MAMP transcriptional responses differed in timing, but displayed a large overlap in gene identity. MAMP-upregulated genes are enriched for genes with functions in immunity, while downregulated genes are enriched for genes related to growth and development. Although 74% of the transcriptional changes inflicted by live WCS417 overlapped with the flg22(417) profile, WCS417 actively suppressed more than half of the MAMP-triggered transcriptional responses, possibly to allow the establishment of a mutually beneficial interaction with the host root. Interestingly, the sector of the flg22(417) -repressed transcriptional network that is not affected by WCS417 has a strong auxin signature. Using auxin response mutant tir1afb2afb3, we demonstrate a dual role for auxin signaling in finely balancing growth-promoting and defense-eliciting activities of beneficial microbes in plant roots
    corecore