23 research outputs found

    Genetic Algorithms in Antennas and Smart Antennas Design Overview: Two Novel Antenna Systems for Triband GNSS Applications and a Circular Switched Parasitic Array for WiMax Applications Developments with the Use of Genetic Algorithms

    Get PDF
    Genetic algorithms belong to a stochastic class of evolutionary techniques, whose robustness and global search of the solutions space have made them extremely popular among researchers. They have been successfully applied to electromagnetic optimization, including antenna design as well as smart antennas design. In this paper, extensive reference to literature related antenna design efforts employing genetic algorithms is taking place and subsequently, three novel antenna systems are designed in order to provide realistic implementations of a genetic algorithm. Two novel antenna systems are presented to cover the new GPS/Galileo band, namely, L5 (1176 MHz), together with the L1 GPS/Galileo and L2 GPS bands (1575 and 1227 MHz). The first system is a modified PIFA and the second one is a helical antenna above a ground plane. Both systems exhibit enhanced performance characteristics, such as sufficient front gain, input impedance matching, and increased front-to-back ratio. The last antenna system is a five-element switched parasitic array with a directional beam with sufficient beamwidth to a predetermined direction and an adequate impedance bandwidth which can be used as receiver for WiMax signals

    Effect of initiation-inhibition and handedness on the patterns of the P50 event-related potential component: a low resolution electromagnetic tomography study

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Recent research recognizes the association between handedness, linguistic processes and cerebral networks subserving executive functioning, but the nature of this association remains unclear. Since the P50 event related potential (ERP) is considered to reflect thalamocortical processes in association with working memory (WM) operation the present study focuses on P50 patterns elicited during the performance of a linguistic related executive functioning test in right- and left-handers.</p> <p>Methods</p> <p>In 64 young adults with a high educational level (33 left-handed) the P50 event-related potential was recorded while performing the initiation and inhibition condition of a modified version of the Hayling Sentence Completion test adjusted to induce WM. The manual preference of the participants was evaluated with the use of the Edinburgh Handedness Inventory (EHI).</p> <p>Results</p> <p>P50 showed greater amplitudes in left- than in right-handers, mainly in frontal leads, in the initiation condition. Reduced amplitudes in inhibition compared to initiation condition were observed in left-handers. Low Resolution Electromagnetic Tomography (LORETA) analysis showed lower frontal lobe activation in the inhibition than in the initiation condition in both right- and left-handers. Also, LORETA yielded that right-handers exhibited greater activation in the inhibition condition than left-handers. Additionally, LORETA showed assymetrical hemispheric activation patterns in right-handers, in contrast to symmetrical patterns observed in left-handers. Higher P50 amplitudes were recorded in right-hemisphere of right-handers in the initiation condition.</p> <p>Conclusion</p> <p>Brain activation, especially the one closely related to thalamocortical function, elicited during WM operation involving initiation and inhibition processes appears to be related to handedness.</p

    Buildings and railway line, Wagga Wagga, New South Wales, ca. 1925 [picture].

    No full text
    Title devised from accompanying information where available.; Part of the: Fairfax archive of glass plate negatives.; Fairfax number: 621/1.; Also available online at: http://nla.gov.au/nla.pic-vn6194233; Acquired from Fairfax Media, 2012

    An Approach for Modelling Harnesses in the Extreme near Field for Low Frequencies

    No full text
    A key part of every space science mission, in the system-level approach, is the detailed study and modeling of the emissions from transmission lines. Harnesses usually emit electromagnetic fields due to the currents (of common and/or differential modes) that flow on their shields. These fields can be identified via conducted emissions measurements. Relying on the operating frequency, any cable can be considered as a dipole or a traveling-wave antenna. Limited work can be found in the literature regarding modeling methodologies for cable topologies, especially in the low frequency (ELF, SLF, VLF, LF) domain. This work intends to provide perceptions for the precise estimation of harness radiated emissions, consider a mission-specific measurement point (where the sensors are placed), and follow ESA&rsquo;s recent science mission studies for electromagnetic cleanliness applications. For the low frequencies considered herein, any linear cable path is considered as a point source (infinitesimal dipole) and we evaluate its effect on the calculated electric field extremely close to the source. For such distances, it is shown that the dipole representation is not accurate. To remedy this phenomenon, this article proposes a methodology, which can be easily expanded to complex cable geometry cases

    Pulse propagation in a nonlinear dielectric slab waveguide

    No full text
    corecore