1,052 research outputs found

    The magnitude of the non-adiabatic pressure in the cosmic fluid

    Full text link
    Understanding the non-adiabatic pressure, or relative entropy, perturbation is crucial for studies of early-universe vorticity and Cosmic Microwave Background observations. We calculate the evolution of the linear non-adiabatic pressure perturbation from radiation domination to late times, numerically solving the linear governing equations for a wide range of wavenumbers. Using adiabatic initial conditions consistent with WMAP seven year data, we find nevertheless that the non-adiabatic pressure perturbation is non-zero and grows at early times, peaking around the epoch of matter/radiation equality and decaying in matter domination. At early times or large redshifts (z=10,000) its power spectrum peaks at a comoving wavenumber k~0.2h/Mpc, while at late times (z=500) it peaks at k~0.02 h/Mpc.Comment: 5 pages, 4 figures. Replaced with version accepted by MNRAS. One figure removed, added some discussio

    Estimating the amount of vorticity generated by cosmological perturbations in the early universe

    Full text link
    We estimate the amount of vorticity generated at second order in cosmological perturbation theory from the coupling between first order energy density and non-adiabatic pressure, or entropy, perturbations. Assuming power law input spectra for the source terms, and working in a radiation background, we calculate the wave number dependence of the vorticity power spectrum and its amplitude. We show that the vorticity generated by this mechanism is non-negligible on small scales, and hence should be taken into consideration in current and future CMB experiments.Comment: 9 pages, revtex4, 1 figure; v2: typos and minor error corrected, result unchange

    The relationship between fibrogenic TGFβ1 signaling in the joint and cartilage degradation in post-injury osteoarthritis

    Get PDF
    SummaryObjectiveTo review the literature on modulation of chondrocyte activities in the osteoarthritic joint, and to discuss these changes in relation to established hard and soft tissue repair paradigms, with an emphasis on transforming growth factor beta (TGFβ1)-mediated signaling which can promote either a chondrogenic or fibrogenic phenotype.MethodsPapers addressing the close relationship between repair in general, and the specific post-injury response of joint tissues are summarized. Different interpretations of the role of TGFβ1 in the emergence of an “osteoarthritic” chondrocyte are compared and the phenotypic plasticity of “reparative” progenitor cells is examined. Lastly, emerging data on a central role for A-Disintegrin-And-Metalloproteinase-with-Thrombospondin-like-Sequences-5 (ADAMTS5) activity in modulating TGFβ1 signaling through activin receptor-like kinase 1 (ALK1) and activin receptor-like kinase 5 (ALK5) pathways is discussed.ResultsThe review illustrates how a transition from ALK5-mediated fibrogenic signaling to ALK1-mediated chondrogenic signaling in joint cells represents the critical transition from a non-reparative to a reparative cell phenotype. Data from cell and in vivo studies illustrates the mechanism by which ablation of ADAMTS5 activity allows the transition to reparative chondrogenesis. Multiple large gene expression studies of normal and osteoarthritis (OA) human cartilages (CAs) also support an important role for TGFβ1-mediated pro-fibrogenic activities during disease progression.ConclusionsWe conclude that progressive articular CA damage in post-injury OA results primarily from biomechanical, cell biologic and mediator changes that promote a fibroblastic phenotype in joint cells. Since ADAMTS5 and TGFβ1 appear to control this process, agents which interfere with their activities may not only enhance endogenous CA repair in vivo, but also improve the properties of tissue-engineered CA for implantation

    Modelling non-dust fluids in cosmology

    Full text link
    Currently, most of the numerical simulations of structure formation use Newtonian gravity. When modelling pressureless dark matter, or `dust', this approach gives the correct results for scales much smaller than the cosmological horizon, but for scenarios in which the fluid has pressure this is no longer the case. In this article, we present the correspondence of perturbations in Newtonian and cosmological perturbation theory, showing exact mathematical equivalence for pressureless matter, and giving the relativistic corrections for matter with pressure. As an example, we study the case of scalar field dark matter which features non-zero pressure perturbations. We discuss some problems which may arise when evolving the perturbations in this model with Newtonian numerical simulations and with CMB Boltzmann codes.Comment: 5 pages; v2: typos corrected and refs added, submitted version; v3: version to appear in JCA

    Vorticity generation at second order in cosmological perturbation theory

    Full text link
    We show that at second order in cosmological perturbation theory vorticity generation is sourced by entropy gradients. This is an extension of Crocco's theorem to a cosmological setting.Comment: 4 pages, revtex4; v2: discussion expanded, references added, version being submitted; v3: corresponds to version published in PR

    The non-adiabatic pressure in general scalar field systems

    Full text link
    We discuss the non-adiabatic or entropy perturbation, which controls the evolution of the curvature perturbation in the uniform density gauge, for a scalar field system minimally coupled to gravity with non-canonical action. We highlight the differences between the sound and the phase speed in these systems, and show that the non-adiabatic pressure perturbation vanishes in the single field case, resulting in the conservation of the curvature perturbation on large scales.Comment: 6 pages, revtex4; v2: typos corrected, results clarified, version being submitted; v3: version accepted for publicatio

    Effects of non-linearities on magnetic field generation

    Get PDF
    Magnetic fields are present on all scales in the Universe. While we understand the processes which amplify the fields fairly well, we do not have a "natural" mechanism to generate the small initial seed fields. By using fully relativistic cosmological perturbation theory and going beyond the usual confines of linear theory we show analytically how magnetic fields are generated. This is the first analytical calculation of the magnetic field at second order, using gauge-invariant cosmological perturbation theory, and including all the source terms. To this end, we have rederived the full set of governing equations independently. Our results suggest that magnetic fields of the order of 103010^{-30} G can be generated (although this depends on the small scale cut-off of the integral), which is largely in agreement with previous results that relied upon numerical calculations. These fields are likely too small to act as the primordial seed fields for dynamo mechanisms.Comment: 21 pages; v2: minor changes, added references; v3: version accepted for publication in JCA
    corecore