14 research outputs found

    The DDO IVC Distance Project: Survey Description and the Distance to G139.6+47.6

    Get PDF
    We present a detailed analysis of the distance determination for one intermediate Velocity Cloud (IVC G139.6+47.6) from the ongoing DDO IVC Distance Project. Stars along the line of sight to G139.6+47.6 are examined for the presence of sodium absorption attributable to the cloud, and the distance bracket is established by astrometric and spectroscopic parallax measurements of demonstrated foreground and background stars. We detail our strategy regarding target selection, observational setup, and analysis of the data, including a discussion of wavelength calibration and sky subtraction uncertainties. We find a distance estimate of 129 (+/- 10) pc for the lower limit and 257 (+211-33) pc for the upper limit. Given the high number of stars showing absorption due to this IVC, we also discuss the small-scale covering factor of the cloud and the likely significance of non-detections for subsequent observations of this and other similar IVC's. Distance measurements of the remaining targets in the DDO IVC project will be detailed in a companion paper.Comment: 10 pages, 6 figures, LaTe

    Properties of the H-alpha-emitting Circumstellar Regions of Be Stars

    Full text link
    Long-baseline interferometric observations obtained with the Navy Prototype Optical Interferometer of the H-alpha-emitting envelopes of the Be stars eta Tauri and beta Canis Minoris are presented. For compatibility with the previously published interferometric results in the literature of other Be stars, circularly symmetric and elliptical Gaussian models were fitted to the calibrated H-alpha observations. The models are sufficient in characterizing the angular distribution of the H-alpha-emitting circumstellar material associated with these Be stars. To study the correlations between the various model parameters and the stellar properties, the model parameters for eta Tau and beta CMi were combined with data for other Be stars from the literature. After accounting for the different distances to the sources and stellar continuum flux levels, it was possible to study the relationship between the net H-alpha emission and the physical extent of the H-alpha-emitting circumstellar region. A clear dependence of the net H-alpha emission on the linear size of the emitting region is demonstrated and these results are consistent with an optically thick line emission that is directly proportional to the effective area of the emitting disk. Within the small sample of stars considered in this analysis, no clear dependence on the spectral type or stellar rotation is found, although the results do suggest that hotter stars might have more extended H-alpha-emitting regions.Comment: 24 pages, 16 figures, accepted for publication in Ap

    Constraining Disk Parameters of Be Stars using Narrowband H-alpha Interferometry with the NPOI

    Full text link
    Interferometric observations of two well-known Be stars, gamma Cas and phi Per, were collected and analyzed to determine the spatial characteristics of their circumstellar regions. The observations were obtained using the Navy Prototype Optical Interferometer equipped with custom-made narrowband filters. The filters isolate the H-alpha emission line from the nearby continuum radiation, which results in an increased contrast between the interferometric signature due to the H-alpha-emitting circumstellar region and the central star. Because the narrowband filters do not significantly attenuate the continuum radiation at wavelengths 50 nm or more away from the line, the interferometric signal in the H-alpha channel is calibrated with respect to the continuum channels. The observations used in this study represent the highest spatial resolution measurements of the H-alpha-emitting regions of Be stars obtained to date. These observations allow us to demonstrate for the first time that the intensity distribution in the circumstellar region of a Be star cannot be represented by uniform disk or ring-like structures, whereas a Gaussian intensity distribution appears to be fully consistent with our observations.Comment: 23 pages, 14 figures, accepted for publication in A

    Spatially resolving the wind and disk structures around active B-type stars

    No full text

    The Large Scale Behaviour in the Disk of δ Scorpii from 2000-2018

    No full text
    We model the circumstellar disk of δ Sco using the 3-dimensional Monte Carlo radiative transfer code HDUST in order to quantify the large scale changes in the disk through the years 2000 to 2018, and to see if these changes can be attributed to the secondary star affecting the disk throughout its orbit. We determine our best-fitting models through matching simulated observations to actual Hα spectroscopy and V-band photometric observations. Our modelling results confirm previous findings that the disk of δ Sco was forming early in the century. We also find a period of disk dissipation when the companion is at apastron, as well as a significant growth of the disk between 2009 and 2011, prior to the periastron of 2011. Due to the steady-state nature of the disk after 2011, it is difficult to say whether the variations seen are due to the effect of the close passage of the binary companion

    Using Photometry to Probe the Circumstellar Environment of δ Scorpii

    Get PDF
    We acquired Johnson BV photometry of the binary Be disk system δ Scorpii during its 2009, 2010, 2011, and 2012 observing seasons and used it to probe the innermost regions of the disk. We found that several disk building events have occurred during this time, resulting in an overall brightening in the V band and reddening of the system. In addition to these long-term trends, we found cyclical variability in each observing season on timescales between 60 and 100 days. We were able to reproduce the changes in the magnitude and color of δ Sco using our theoretical models and found that variable mass-loss rates in the range 2.5–7.0 × 10−9M☉ yr−1 over ∼35 days can reproduce the observed increase in brightness
    corecore