177 research outputs found

    Heavy Element Dispersion in the Metal-Poor Globular Cluster M92

    Get PDF
    Dispersion among the light elements is common in globular clusters (GCs), while dispersion among heavier elements is less common. We present detection of r-process dispersion relative to Fe in 19 red giants of the metal-poor GC M92. Using spectra obtained with the Hydra multi-object spectrograph on the WIYN Telescope at Kitt Peak National Observatory, we derive differential abundances for 21 species of 19 elements. The Fe-group elements, plus Y and Zr, are homogeneous at a level of 0.07-0.16 dex. The heavy elements La, Eu, and Ho exhibit clear star-to-star dispersion spanning 0.5-0.8 dex. The abundances of these elements are correlated with one another, and we demonstrate that they were produced by r-process nucleosynthesis. This r-process dispersion is not correlated with the dispersion in C, N, or Na in M92, indicating that r-process inhomogeneities were present in the gas throughout star formation. The r-process dispersion is similar to that previously observed in the metal-poor GC M15, but its origin in M15 or M92 is unknown at present.Comment: Accepted for publication in the Astronomical Journal (22 pages, 12 figures). v2: references update

    Atmospheric Stellar Parameters from Cross-Correlation Functions

    Full text link
    The increasing number of spectra gathered by spectroscopic sky surveys and transiting exoplanet follow-up has pushed the community to develop automated tools for atmospheric stellar parameters determination. Here we present a novel approach that allows the measurement of temperature (TeffT_{\rm eff}), metallicity ([Fe/H][{\rm Fe}/{\rm H}]) and gravity (logg\log g) within a few seconds and in a completely automated fashion. Rather than performing comparisons with spectral libraries, our technique is based on the determination of several cross-correlation functions (CCFs) obtained by including spectral features with different sensitivity to the photospheric parameters. We use literature stellar parameters of high signal-to-noise (SNR\textrm{SNR}), high-resolution HARPS spectra of FGK Main Sequence stars to calibrate TeffT_{\rm eff}, [Fe/H][{\rm Fe}/{\rm H}] and logg\log g as a function of CCFs parameters. Our technique is validated using low SNR\textrm{SNR} spectra obtained with the same instrument. For FGK stars we achieve a precision of σTeff=50\sigma_{T_{\rm eff}} = 50 K, σlogg=0.09 dex\sigma_{\log g} = 0.09~ \textrm{dex} and σFe/H]=0.035 dex\sigma_{\textrm{Fe}/\textrm{H}]} =0.035~ \textrm{dex} at SNR=50\textrm{SNR}=50 , while the precision for observation with SNR100\textrm{SNR} \gtrsim 100 and the overall accuracy are constrained by the literature values used to calibrate the CCFs. Our approach can be easily extended to other instruments with similar spectral range and resolution, or to other spectral range and stars other than FGK dwarfs if a large sample of reference stars is available for the calibration. Additionally, we provide the mathematical formulation to convert synthetic equivalent widths to CCF parameters as an alternative to direct calibration. We have made our tool publicly available.Comment: Accepted by MNRAS. 12 pages, 12 figures. The code to retrieve the atmospheric stellar parameters from HARPS and HARPS-N spectra is available "at this url, https://github.com/LucaMalavolta/CCFpams
    corecore