149 research outputs found
Using Scalable Video Coding For Dynamic Adaptive Streaming Over HTTP in Mobile Environments
Dynamic Adaptive Streaming over HTTP (DASH) is a convenient approach to transfer videos in an adaptive and dynamic way to the user. As a consequence, this system provides high bandwidth flexibility and is especially suitable for mobile use cases where the bandwidth variations are tremendous. In this paper we have integrated the Scalable Video Coding (SVC) extensions of the Advanced Video Coding (AVC) standard into the recently ratified MPEG-DASH standard. Furthermore, we have evaluated our solution under restricted conditions using bandwidth traces from mobile environments and compared it with an improved version of our MPEG-DASH implementation using AVC as well as major industry solutions
Automated QoE Evaluation of Dynamic Adaptive Streaming over HTTP
Dynamic Adaptive Streaming over HTTP (DASH) is referred to as a multimedia streaming standard to deliver high quality multimedia content over the Internet using conventional HTTP Web servers. As a fundamental feature, it enables automatic switching of quality levels according to network conditions, user requirements, and expectations. Currently, the proposed adaptation schemes for HTTP streaming mostly rely on throughput measurements and/or buffer-related metrics, such as buffer exhaustion and levels. In this paper, we propose to enhance the DASH adaptation logic by feeding it with additional information from our evaluation of the users' perception approximating the userperceived quality of video playback. The proposed model aims at conveniently combining TCP-, buffer-, and media content-related metrics as well as user requirements and expectations to be used as an input for the DASH adaptation logic. Experiments have demonstrated that the chosen model enhances the capability of the adaptation logic to select the optimal video quality level. Finally, we integrated all our findings into a real DASH system with QoE monitoring capabilitie
Differential limit on the extremely-high-energy cosmic neutrino flux in the presence of astrophysical background from nine years of IceCube data
We report a quasi-differential upper limit on the extremely-high-energy (EHE)
neutrino flux above GeV based on an analysis of nine years of
IceCube data. The astrophysical neutrino flux measured by IceCube extends to
PeV energies, and it is a background flux when searching for an independent
signal flux at higher energies, such as the cosmogenic neutrino signal. We have
developed a new method to place robust limits on the EHE neutrino flux in the
presence of an astrophysical background, whose spectrum has yet to be
understood with high precision at PeV energies. A distinct event with a
deposited energy above GeV was found in the new two-year sample, in
addition to the one event previously found in the seven-year EHE neutrino
search. These two events represent a neutrino flux that is incompatible with
predictions for a cosmogenic neutrino flux and are considered to be an
astrophysical background in the current study. The obtained limit is the most
stringent to date in the energy range between and GeV. This result constrains neutrino models predicting a three-flavor
neutrino flux of $E_\nu^2\phi_{\nu_e+\nu_\mu+\nu_\tau}\simeq2\times 10^{-8}\
{\rm GeV}/{\rm cm}^2\ \sec\ {\rm sr}10^9\ {\rm GeV}$. A significant part
of the parameter-space for EHE neutrino production scenarios assuming a
proton-dominated composition of ultra-high-energy cosmic rays is excluded.Comment: The version accepted for publication in Physical Review
Recollecting positive and negative autobiographical memories disrupts working memory.
The present article reports two experiments examining the impact of recollecting emotionally valenced autobiographical memories on subsequent working memory (WM) task performance. Experiment 1 found that negatively valenced recollection significantly disrupted performance on a supra-span spatial WM task. Experiment 2 replicated and extended these findings to a verbal WM task (digit recall), and found that both negative and positive autobiographical recollections had a detrimental effect on verbal WM. In addition, we observed that these disruptive effects were more apparent on early trials, immediately following autobiographical recollection. Overall, these findings show that both positive and negative affect can disrupt WM when the mood-eliciting context is based on autobiographical memories. Furthermore, these results indicate that the emotional disruption of WM can take place across different modalities of WM (verbal and visuo-spatial
Consensus classification of posterior cortical atrophy
INTRODUCTION: A classification framework for posterior cortical atrophy (PCA) is proposed to improve the uniformity of definition of the syndrome in a variety of research settings. METHODS: Consensus statements about PCA were developed through a detailed literature review, the formation of an international multidisciplinary working party which convened on four occasions, and a Web-based quantitative survey regarding symptom frequency and the conceptualization of PCA. RESULTS: A three-level classification framework for PCA is described comprising both syndrome- and disease-level descriptions. Classification level 1 (PCA) defines the core clinical, cognitive, and neuroimaging features and exclusion criteria of the clinico-radiological syndrome. Classification level 2 (PCA-pure, PCA-plus) establishes whether, in addition to the core PCA syndrome, the core features of any other neurodegenerative syndromes are present. Classification level 3 (PCA attributable to AD [PCA-AD], Lewy body disease [PCA-LBD], corticobasal degeneration [PCA-CBD], prion disease [PCA-prion]) provides a more formal determination of the underlying cause of the PCA syndrome, based on available pathophysiological biomarker evidence. The issue of additional syndrome-level descriptors is discussed in relation to the challenges of defining stages of syndrome severity and characterizing phenotypic heterogeneity within the PCA spectrum. DISCUSSION: There was strong agreement regarding the definition of the core clinico-radiological syndrome, meaning that the current consensus statement should be regarded as a refinement, development, and extension of previous single-center PCA criteria rather than any wholesale alteration or redescription of the syndrome. The framework and terminology may facilitate the interpretation of research data across studies, be applicable across a broad range of research scenarios (e.g., behavioral interventions, pharmacological trials), and provide a foundation for future collaborative work
Investigation of two Fermi-LAT gamma-ray blazars coincident with high-energy neutrinos detected by IceCube
After the identification of the gamma-ray blazar TXS 0506+056 as the first
compelling IceCube neutrino source candidate, we perform a systematic analysis
of all high-energy neutrino events satisfying the IceCube realtime trigger
criteria. We find one additional known gamma-ray source, the blazar GB6
J1040+0617, in spatial coincidence with a neutrino in this sample. The chance
probability of this coincidence is 30% after trial correction. For the first
time, we present a systematic study of the gamma-ray flux, spectral and optical
variability, and multi-wavelength behavior of GB6 J1040+0617 and compare it to
TXS 0506+056. We find that TXS 0506+056 shows strong flux variability in the
Fermi-LAT gamma-ray band, being in an active state around the arrival of
IceCube-170922A, but in a low state during the archival IceCube neutrino flare
in 2014/15. In both cases the spectral shape is statistically compatible () with the average spectrum showing no indication of a significant
relative increase of a high-energy component. While the association of GB6
J1040+0617 with the neutrino is consistent with background expectations, the
source appears to be a plausible neutrino source candidate based on its
energetics and multi-wavelength features, namely a bright optical flare and
modestly increased gamma-ray activity. Finding one or two neutrinos originating
from gamma-ray blazars in the given sample of high-energy neutrinos is
consistent with previously derived limits of neutrino emission from gamma-ray
blazars, indicating the sources of the majority of cosmic high-energy neutrinos
remain unknown.Comment: 22 pages, 11 figures, 2 Table
In-situ estimation of ice crystal properties at the South Pole using LED calibration data from the IceCube Neutrino Observatory
The IceCube Neutrino Observatory instruments about 1 km3 of deep, glacial ice at the geographic South Pole using 5160 photomultipliers to detect Cherenkov light emitted by charged relativistic particles. A unexpected light propagation effect observed by the experiment is an anisotropic attenuation, which is aligned with the local flow direction of the ice. Birefringent light propagation has been examined as a possible explanation for this effect. The predictions of a first-principles birefringence model developed for this purpose, in particular curved light trajectories resulting from asymmetric diffusion, provide a qualitatively good match to the main features of the data. This in turn allows us to deduce ice crystal properties. Since the wavelength of the detected light is short compared to the crystal size, these crystal properties do not only include the crystal orientation fabric, but also the average crystal size and shape, as a function of depth. By adding small empirical corrections to this first-principles model, a quantitatively accurate description of the optical properties of the IceCube glacial ice is obtained. In this paper, we present the experimental signature of ice optical anisotropy observed in IceCube LED calibration data, the theory and parametrization of the birefringence effect, the fitting procedures of these parameterizations to experimental data as well as the inferred crystal properties.</p
LeptonInjector and LeptonWeighter: A neutrino event generator and weighter for neutrino observatories
We present a high-energy neutrino event generator, called LeptonInjector,
alongside an event weighter, called LeptonWeighter. Both are designed for
large-volume Cherenkov neutrino telescopes such as IceCube. The neutrino event
generator allows for quick and flexible simulation of neutrino events within
and around the detector volume, and implements the leading Standard Model
neutrino interaction processes relevant for neutrino observatories:
neutrino-nucleon deep-inelastic scattering and neutrino-electron annihilation.
In this paper, we discuss the event generation algorithm, the weighting
algorithm, and the main functions of the publicly available code, with
examples.Comment: 28 pages, 10 figures, 3 table
In situ estimation of ice crystal properties at the South Pole using LED calibration data from the IceCube Neutrino Observatory
The IceCube Neutrino Observatory instruments about 1 km3 of deep, glacial ice at the geographic South Pole. It uses 5160 photomultipliers to detect Cherenkov light emitted by charged relativistic particles. An unexpected light propagation effect observed by the experiment is an anisotropic attenuation, which is aligned with the local flow direction of the ice. We examine birefringent light propagation through the polycrystalline ice microstructure as a possible explanation for this effect. The predictions of a first-principles model developed for this purpose, in particular curved light trajectories resulting from asymmetric diffusion, provide a qualitatively good match to the main features of the data. This in turn allows us to deduce ice crystal properties. Since the wavelength of the detected light is short compared to the crystal size, these crystal properties include not only the crystal orientation fabric, but also the average crystal size and shape, as a function of depth. By adding small empirical corrections to this first-principles model, a quantitatively accurate description of the optical properties of the IceCube glacial ice is obtained. In this paper, we present the experimental signature of ice optical anisotropy observed in IceCube light-emitting diode (LED) calibration data, the theory and parameterization of the birefringence effect, the fitting procedures of these parameterizations to experimental data, and the inferred crystal properties.Peer Reviewe
- …