45 research outputs found

    Oral Microencapsulated Live Saccharomyces cerevisiae Cells for Use in Renal Failure Uremia: Preparation and In Vivo Analysis

    Get PDF
    Orally administrable alginate-poly-L-lysine-alginate (APA) microcapsules containing live yeast cells was investigated for use in renal failure. At all times, yeast cells remain inside the microcapsules, which are then excreted in the stool. During their gastrointestinal passage, small molecules, like urea, diffuse into the yeast microcapsules where they are hydrolyzed. Orally administrating these microcapsules to uremic rats was found to decrease urea concentrations from 7.29 ± 0.89 mmol/L to 6.12 ± 0.90 mmol/L over a treatment period of eight weeks. After stopping the treatment, the urea concentrations increased back to uremic levels of 7.64 ± 0.77 mmol/L. The analysis of creatinine concentrations averaged 39.19 ± 4.33 μmol/L, 50.83 ± 5.55 μmol/L, and 50.28 ± 7.10 μmol/L for the normal-control, uremic-control and uremic-treatment groups, respectively. While creatinine concentrations for both uremic-control and uremic-treatment groups did not differ among each other (P > .05), they were, however, significantly higher than those of the normal control group (P < .05). Uric acid concentrations averaged 80.08 ± 26.49 μmol/L, 99.92 ± 26.55 μmol/L, and 86.49 ± 28.42 μmol/L for the normal-control, uremic-control and uremic-treatment groups, respectively. There were no significant differences in both calcium and phosphate concentrations among all three groups (P > .05). The microbial populations of five tested types of bacteria were not substantially altered by the presence of the yeast APA encapsulated yeast (P > .05)

    Growth of Lactobacillus reuteri NCIMB 30242 during yogurt fermentation and bile salt hydrolysis activity in the product

    Get PDF
    International audienceAbstractThe synthesis of bile salt hydrolase has been linked to the health benefit of Lactobacillus reuteri toward lowering blood cholesterol. The aim of this study was to examine the growth and bile salt hydrolysis activity (BSHA) of L. reuteri NCIMB 30242 during milk fermentation with a yogurt starter. There was little growth of L. reuteri during a 4-h co-fermentation with a yogurt culture, and an inoculation of 4.5 × 107 CFU.mL−1 was needed to obtain the 108 CFU.mL−1 target in the product. Enrichment of milk with sugars, minerals, or peptone-based ingredients did not improve growth of L. reuteri. Viable counts of L. reuteri above 1.5 × 108 CFU.mL−1 generated texture defects. Free and microencapsulated (ME) cultures were tested for BSHA in the yogurt drinks. L. reuteri cells which grew during the 4-h lactic fermentation had 40% less BSHA than L. reuteri added directly via the commercial culture. The BSHA of free cells was apparently three times higher than in the ME culture. This study adds data showing that the yogurt production process could affect the functionality of probiotic bacteria

    Investigation of Microencapsulated BSH Active Lactobacillus in the Simulated Human GI Tract

    Get PDF
    This study investigated the use of microencapsulated bile salt hydrolase (BSH) overproducing Lactobacillus plantarum 80 cells for oral delivery applications using a dynamic computer-controlled model simulating the human gastrointestinal (GI) tract. Bile salt deconjugation rates for microencapsulated BSH overproducing cells were 4.87 ± 0.28 μmol/g microcapsule/h towards glycoconjugates and 0.79 ± 0.15 μmol/g microcapsule/h towards tauroconjugates in the simulated intestine, a significant (P< .05) increase over microencapsulated wild-type cells. Microcapsules protected the encased cells in the simulated stomach prior to intestinal release, maintaining cell viability above 109 cfu/mL at pH 2.5 and 3.0 and above 106 cfu/mL at pH 2.0 after 2-hour residence times. In the simulated intestine, encased cell viability was maintained above 1010 cfu/mL after 3, 6, and 12-hour residence times in bile concentrations up to 1.0%. Results show that microencapsulation has potential in the oral delivery of live BSH active bacterial cells. However, in vivo testing is required

    Diet-induced metabolic hamster model of nonalcoholic fatty liver disease

    Get PDF
    Obesity, hypercholesterolemia, elevated triglycerides, and type 2 diabetes are major risk factors for metabolic syndrome. Hamsters, unlike rats or mice, respond well to diet-induced obesity, increase body mass and adiposity on group housing, and increase food intake due to social confrontation-induced stress. They have a cardiovascular and hepatic system similar to that of humans, and can thus be a useful model for human pathophysiology

    Effect of Orally Administered Microencapsulated FA-Producing L. fermentum on Markers of Metabolic Syndrome: An In Vivo Analysis

    Get PDF
    Ferulic Acid (FA) is a natural phenolic acid produced by a number of lactic acid bacteria. FA has a number of beneficial properties, including: antioxidant activity, anti-tumorigenic properties and cholesterol-lowering capabilities. Our group has previously screened lactobacilli for FA production, and selected L. fermentum ATCC 11976 (L.f. 11976) as one of the best producers. Alginate-polylysine-alginate (APA) microencapsulation has proven successful for the oral delivery of this strain to the colon, where production of FA is greatest. The aim of this study was to investigate the role of APA microencapsulated L.f. 11976 to modulate markers of metabolic syndrome. The antioxidant activity, as a potential mechanism of action to treat/prevent metabolic syndrome of free and microencapsulated L.f. 11976 was quantified. A high-fat fed BioF1B Golden Syrian hamster model was used to investigate the effects of orally administered microencapsulated L.f. 11976 on markers of metabolic syndrome. Results demonstrate that the microencapsulated L.f. 11976 formulation greatly reduced the adiposity index (p = 0.0014), serum insulin (p = 0.0042), insulin resistance (p = 0.0096), glycosylated albumin (p = 0.00013), serum leptin (p = 0.048), serum uric acid (p =0.025) serum total cholesterol (p = 0.024), serum esterified cholesterol (p = 0.0328) and free non-esterified fatty acid (p = 0.029) levels in the treated animals. This research indicates that the probiotic L.f. 11976 microencapsulated formulation may significantly delay the onset of insulin resistance, hyperglycemia, hyperinsulinemia, dyslipidemia and obesity, indicating a lower risk of diabetes and cardiovascular disease. We propose and discuss the potential mechanism(s) of action by which FA is acting. With these in mind, further in vivo studies are required to validate the therapeutic effects of the formulation and to investigate the mechanism(s) of action by which the probiotic formulation is acting

    Oral Probiotic Microcapsule Formulation Ameliorates Non-Alcoholic Fatty Liver Disease in Bio F1B Golden Syrian Hamsters

    Get PDF
    The beneficial effect of a microencapsulated feruloyl esterase producing Lactobacillus fermentum ATCC 11976 formulation for use in non-alcoholic fatty liver disease (NAFLD) was investigated. For which Bio F1B Golden Syrian hamsters were fed a methionine deficient/choline devoid diet to induce non-alcoholic fatty liver disease. Results, for the first time, show significant clinical benefits in experimental animals. Examination of lipids show that concentrations of hepatic free cholesterol, esterified cholesterol, triglycerides and phospholipids were significantly lowered in treated animals. In addition, serum total cholesterol, triglycerides, uric acid and insulin resistance were found to decrease in treated animals. Liver histology evaluations showed reduced fat deposits. Western blot analysis shows significant differences in expression levels of key liver enzymes in treated animals. In conclusion, these findings suggest the excellent potential of using an oral probiotic formulation to ameliorate NAFLD

    Investigation of Genipin Cross-Linked Microcapsule for Oral Delivery of Live Bacterial Cells and Other Biotherapeutics: Preparation and In Vitro Analysis in Simulated Human Gastrointestinal Model

    Get PDF
    Oral therapy utilizing engineered microorganisms has shown promise in the treatment of many diseases. By microencapsulation, viable cells can overcome the harsh gastrointestinal (GI) environment and secrete needed therapeutics into the gut. These engineered cells should be encased without escaping into the GI tract for safety concerns, thus robust microcapsule membrane is requisite. This paper examined the GI performance of a novel microcapsule membrane using a dynamic simulated human GI model. Results showed that the genipin cross-linked alginate-chitosan (GCAC) microcapsules possessed strong resistance to structural disintegration in the simulated GI environment. Leakage of encapsulated high molecular weight dextran, a model material to be protected during the simulated GI transit, was negligible over 72 h of exposure, in contrast to considerable leakage of dextran from the non-cross-linked counterparts. These microcapsules did not alter the microflora and enzymatic activities in the simulated human colonic media. This study suggested the potential of the GCAC microcapsules for oral delivery of live microorganisms and other biotherapeutics

    Probiotics, Anticipation Stress, and the Acute Immune Response to Night Shift

    Get PDF
    IntroductionSleep disturbance and sleep disruption are associated with chronic, low grade inflammation and may underpin a range of chronic diseases in night shift workers. Through modulation of the intestinal microbiota, probiotic supplements may moderate the effects of sleep disruption on the immune system. The aim of this study was to examine 14 days of daily probiotic supplementation on the acute response of acute phase proteins and immune markers to sleep disruption associated with night shift work (Australia and New Zealand Clinical Trials Registry: 12617001552370).MethodsIndividuals (mean age 41 ± 11 yrs; 74% female) performing routine night shift were randomly assigned to a probiotic group (1 × 1010 colony forming units (CFU) Lactobacillus acidophilus DDS-1 or 1 × 1010 CFU Bifidobacterium animalis subsp. lactis UABla-12) or placebo (n= 29 per group). Participants undertook a 14-day supplementation period that coincided with a period of no night shifts followed by two consecutive night shifts. Blood samples were collected prior to the start of supplementation (V1), prior to commencing the first night shift (V2), after the first night shift (V3) and after the second night shift (V4). Serum was assessed for markers of stress (cortisol), acute phase response (C reactive protein (CRP), erythrocyte sedimentation rate, pentraxin), adhesion markers (serum E-selectin, mucosal vascular addressin cell adhesion molecule 1 (MAdCAM-1), and serum cytokines (interleukin (IL)-1ra, IL-1β, IL-6, tumor necrosis factor (TNF)-α, IL-10). Sleep quality was assessed with the Pittsburgh Sleep Quality Index (PSQI) and a Fitbit activity tracker.ResultsThe groups were well balanced on key markers and the probiotic strains were well tolerated. The 14-day supplementation period that coincided with typical night-day sleep-wake cycles leading up to night shift (V1 to V2) was associated with significant changes in the placebo group in the concentration of serum cortisol (p = 0.01), pentraxin (p = 0.001), MAdCAM-1 (p = 0.001), and IL-1ra (p=0.03). In contrast, probiotic supplementation moderated changes in these serum markers from V1 to V2. No significant interaction effects (time by group) were observed for the serum markers prior to and after night shift work following probiotic supplementation due to the substantial changes in the serum markers that occurred during the normal sleep period from V1 to V2.ConclusionsProbiotics may moderate the effects of anticipatory stress on the immune system in the lead up to night shift
    corecore