4,550 research outputs found

    A Developmental Model of Infantile Nystagmus

    Get PDF
    The possibility that infantile nystagmus (IN) may reflect a failure in early sensorimotor integration has been proposed for more than a century, but is only recently being borne out in animal studies. The underlying neural and genetic substrate for this plasticity is complex. We propose that, in most cases, IN develops as a developmental response to reduced contrast sensitivity to high-spatial frequencies in an early "critical period," however caused, whether by structural malformations (e.g. foveal hypoplasia) or poor optics (e.g. cataract). As shown by psychophysics, contrast sensitivity to low spatial frequencies is enhanced by motion of the image across the retina. Based on our previous theoretical study (Harris & Berry, Nonlinear Dynamics, 2006), we argue that the best compromise between moving the image and maintaining the image near the fovea (or its remnant) is to oscillate the eyes with jerk nystagmus with increasing velocity waveforms, as seen empirically. The generation of jerk waveforms relies heavily on the saccadic system, which is immature in infancy. Pendular waveforms may therefore provide an alternative to jerk waveforms, and may explain why they are seen more often in young infants. We discuss the implications of this developmental model for the need to synchronize sensory and motor developments in normal development. Failure of this synchronization may also explain some idiopathic cases

    Congenital Nystagmus as Non-Linear Adaptive Oscillations

    Get PDF
    Congenital Nystagmus (CN) is a pathological involuntary oscillation of the eyes with an onset within the first few months of life, with an incidence of about 1:3000. It is a life-long oculomotor disorder that cannot be explained by any underlying neurological abnormality which might compromise adaptive mechanisms. There is no cure, and CN has so far defied explanation in spite of numerous attempts to model the disorder. In this theoretical study we show that these eye oscillations could develop as an adaptive response to maximise visual contrast with poor foveal function in the infant visuomotor system, at a time of peak neural plasticity. We propose that CN is a normal developmental adaptive response to an abnormal congenital sensory input. This can explain why CN does not emerge later in life and why CN is so refractory to treatment. It also implies that any therapeutic intervention would need to be very early in life

    A Distal Model of Congenital Nystagmus as Nonlinear Adaptive Oscillations

    Get PDF
    Congenital nystagmus (CN) is an incurable pathological spontaneous oscillation of the eyes with an onset in the first few months of life. The pathophysiology of CN is mysterious. There is no consistent neurological abnormality, but the majority of patients have a wide range of unrelated congenital visual abnormalities affecting either the cornea, lens, retina or optic nerve. In this theoretical study, we show that these eye oscillations could develop as an adaptive response to maximize visual contrast with poor foveal function in the infant visuomotor system, at a time of peak neural plasticity. We argue that in a visual system with abnormally poor high spatial frequency sensitivity, image contrast is not only maintained by keeping the image on the fovea (or its remnant) but also by some degree of image motion. Using the calculus of variations, we show that the optimal trade-off between these conflicting goals is to generate oscillatory eye movements with increasing velocity waveforms, as seen in real CN. When we include a stochastic component to the start of each epoch (quick-phase inaccuracy) various observed waveforms (including pseudo-cycloid) emerge as optimal strategies. Using the delay embedding technique, we find a low fractional dimension as reported in real data. We further show that, if a velocity command-based pre-motor circuitry (neural integrator) is harnessed to generate these waveforms, the emergence of a null region is inevitable. We conclude that CN could emerge paradoxically as an ‘optimal’ adaptive response in the infant visual system during an early critical period. This can explain why CN does not emerge later in life and why CN is so refractory to treatment. It also implies that any therapeutic intervention would need to be very early in life

    A Developmental Model of Congenital Nystagmus

    Get PDF
    Purpose: Congenital nystagmus (CN) is a spontaneous oscillation of the eyes with an onset in the first few months of life. In 90% of affected children there is an associated underlying sensory defect (foveal hypoplasia, cone dysfunction, cataracts, etc.). In 10% no underlying visual defect can be found, and the nystagmus is labelled as ‘idiopathic’. CN appears to be a developmental anomaly of sensorimotor integration, as it is not have an onset later in infancy or beyond, but why such a wide variety of early onset visual defects should lead to life-long oscillation of the eyes is a mystery. Previous models have focussed on a systems level approach to explain how CN might be generated by known oculomotor circuits. We ask, instead, why CN might occur. Model: Our basic tenet is that infant visuomotor development is highly plastic during some early ‘critical’ period. A defect of foveal vision occurring during (and only during) this period leads to an anomalous connectivity in the oculomotor circuitry, which becomes permanent thereafter. We propose that circuitry normally used for precise foveal registration of a visual object (gaze holding, fixation, and smooth pursuit) develops to maintain some degree of image motion, as this would maximise contrast for a low spatial frequency system. However, this motion is in conflict with maintaining the image on the fovea (or its remnant). We explore the best oculomotor strategy to cope with this conflict. Results: The optimal strategy (in the least squares sense) is to oscillate the eyes in one meridian with alternating slow and quick (saccade) phases. Remarkably, the optimal waveform profile has an increasing-velocity profile. Many of the unique waveforms seen empirically in CN are also optimal strategies given realistic uncertainty in the initial position of a slow phase. Using non-linear dynamical systems analysis, we show that these ‘optimal’ oscillations have similar fractional correlation dimensions to observed data. We also show that a ‘null region’, as commonly observed in CN, would be an inevitable consequence of a velocity driven oculomotor system. Conclusions: We have developed a new approach to understanding oculomotor development, in which we examine the best strategy to maximise visual contrast. In a normal foveate visual system with fine oculomotor control, the best strategy is to develop good foveal registration, which we call ‘fixation’, and ‘smooth pursuit’. If, however, the fovea is absent or not being stimulated (eg. cataracts), the best strategy would be to develop oscillations of the type seen in CN. It implies that the chaotic oscillations are the result of a physiological developmental adaptive process. This is in contrast to the prevailing view that CN is a disease that can be ‘cured’. It is not surprising that CN has proven remarkably refractory to therapeutic intervention with only minimal (if any) long-term successes using drugs, surgery, or even biofeedback. We argue that CN is as adaptive and permanent as normal eye movements are in a normally sighted individual

    Parameter estimation on compact binary coalescences with abruptly terminating gravitational waveforms

    Full text link
    Gravitational-wave astronomy seeks to extract information about astrophysical systems from the gravitational-wave signals they emit. For coalescing compact-binary sources this requires accurate model templates for the inspiral and, potentially, the subsequent merger and ringdown. Models with frequency-domain waveforms that terminate abruptly in the sensitive band of the detector are often used for parameter-estimation studies. We show that the abrupt waveform termination contains significant information that affects parameter-estimation accuracy. If the sharp cutoff is not physically motivated, this extra information can lead to misleadingly good accuracy claims. We also show that using waveforms with a cutoff as templates to recover complete signals can lead to biases in parameter estimates. We evaluate when the information content in the cutoff is likely to be important in both cases. We also point out that the standard Fisher matrix formalism, frequently employed for approximately predicting parameter-estimation accuracy, cannot properly incorporate an abrupt cutoff that is present in both signals and templates; this observation explains some previously unexpected results found in the literature. These effects emphasize the importance of using complete waveforms with accurate merger and ringdown phases for parameter estimation.Comment: Very minor changes to match published versio

    Late Mid Devonian Sawdonia (Zosterophyllopsida) from Venezuela

    Get PDF
    Premise of research. Fossil plants from the Late Middle to early Late Devonian age Campo Chico Formation, Sierra de Perijá, western Venezuela, are determined to represent a new species of the zosterophyll genus Sawdonia. While mentioned in previous publications, this plant has not been previously described or formally named. A conclusive taxonomic assignment was not possible until clarification of the sporangial morphology of the type species of Sawdonia, S. ornata (Gensel and Berry 2016), from the Early Devonian of Canada. Methodology. The adpressions were prepared using dégagement, including serial dégagement and photography at each stage. Permineralized remains were prepared using established techniques for pyrite sectioning and polishing. Taphonomic analysis included preparing models and subjecting them to compression to aid in understanding their shape and orientation in life. Pivotal results. The Venezuelan plants are adpressions of spiny axes that exhibit two types of branching (especially in vegetative ones), circinate tips, anatomy with G-type tracheids, and lateral sporangia with unequal-sized sporangial valves, with the abaxial valve being spinous as is characteristic of the genus Sawdonia Hueber emend Gensel and Berry 2016. Sporangia are irregularly arranged along some axes and appear to be located in medial to subdistal regions. Spores were not obtained. Conclusions. Differences in length and density of spines, the presence of two types of branching related to its growth habit, and details of sporangial morphology distinguish the Venezuelan plants from those of the type species and S. deblondii, thus leading to establishing a new species. This discovery demonstrates the longevity of the genus (ca. 20 Myr) during a time of profound vegetational change, including the rise of forests, and is the first record of a fertile zosterophyll recorded from the Middle Devonian of South America

    Palaeobotany: the rise of the earth's early forests

    Get PDF

    Accuracy of inference on the physics of binary evolution from gravitational-wave observations

    Full text link
    The properties of the population of merging binary black holes encode some of the uncertain physics of the evolution of massive stars in binaries. The binary black hole merger rate and chirp mass distribution are being measured by ground-based gravitational-wave detectors. We consider isolated binary evolution and explore how accurately the physical model can be constrained with such observations by applying the Fisher information matrix to the merging black hole population simulated with the rapid binary population synthesis code COMPAS. We investigate variations in four COMPAS parameters: common envelope efficiency, kick velocity dispersion, and mass loss rates during the luminous blue variable and Wolf--Rayet stellar evolutionary phases. We find that 1000 observations would constrain these model parameters to a fractional accuracy of a few percent. Given the empirically determined binary black hole merger rate, we can expect gravitational-wave observations alone to place strong constraints on the physics of stellar and binary evolution within a few years.Comment: 12 pages, 9 figures; version accepted by Monthly Notices of the Royal Astronomical Societ

    Terahertz generation using plasmonic photoconductive gratings

    Full text link
    A photoconductive terahertz emitter based on plasmonic contact electrode gratings is presented and experimentally demonstrated. The nanoscale grating enables ultrafast and high quantum efficiency operation simultaneously, by reducing the photo-generated carrier transport path to the photoconductor contact electrodes. The presented photoconductor eliminates the need for a short-carrier lifetime semiconductor, which limits the efficiency of conventional photoconductive terahertz emitters. Additionally, the photo-absorbing active area of the plasmonic photoconductive terahertz emitter can be increased without a significant increase in the capacitive loading to the terahertz radiating antenna, enabling high quantum-efficiency operation at high pump power levels by preventing the carrier screening effect and thermal breakdown. A plasmonic photoconductive terahertz emitter prototype based on the presented scheme is implemented and integrated with dipole antenna arrays on a semi-insulating In 0.53 Ga 0.47 As substrate. Emitted terahertz radiation is characterized in a terahertz time-domain spectroscopy setup, measuring a terahertz pulse width of 590 fs full-width at half maximum in response to 150 fs pump pulses at 925 nm.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/98624/1/1367-2630_14_10_105029.pd
    • …
    corecore