128 research outputs found
Spinning dust emission: the effect of rotation around a non-principal axis
We investigate the rotational emission from dust grains that rotate around
non- principal axes. We argue that in many phases of the interstellar medium,
the smallest grains, which dominate spinning dust emission, are likely to have
their nutation state (orientation of principal axes relative to the angular
momentum vector) randomized during each thermal spike. We recompute the
excitation and damping rates associated with rotational emission from the grain
permanent dipole, grain-plasma interactions, infrared photon emission, and
collisions. The resulting spinning dust spectra gener- ally show a shift toward
higher emissivities and peak frequencies relative to previous calculations.Comment: Version accepted for publication in MNRAS. The derivation of the
emission spectrum was clarified. The companion code, SPDUST.2, can be
downloaded from http://www.tapir.caltech.edu/~yacine/spdust/spdust.htm
CMBPol Mission Concept Study: Foreground Science Knowledge and Prospects
We report on our knowledge of Galactic foregrounds, as well as on how a CMB
satellite mission aiming at detecting a primordial B-mode signal (CMBPol) will
contribute to improving it. We review the observational and analysis techniques
used to constrain the structure of the Galactic magnetic field, whose presence
is responsible for the polarization of Galactic emissions. Although our current
understanding of the magnetized interstellar medium is somewhat limited,
dramatic improvements in our knowledge of its properties are expected by the
time CMBPol flies. Thanks to high resolution and high sensitivity instruments
observing the whole sky at frequencies between 30 GHz and 850 GHz, CMBPol will
not only improve this picture by observing the synchrotron emission from our
galaxy, but also help constrain dust models. Polarized emission from
interstellar dust indeed dominates over any other signal in CMBPol's highest
frequency channels. Observations at these wavelengths, combined with
ground-based studies of starlight polarization, will therefore enable us to
improve our understanding of dust properties and of the mechanism(s)
responsible for the alignment of dust grains with the Galactic magnetic field.
CMBPol will also shed new light on observations that are presently not well
understood. Morphological studies of anomalous dust and synchrotron emissions
will indeed constrain their natures and properties, while searching for
fluctuations in the emission from heliospheric dust will test our understanding
of the circumheliospheric interstellar medium. Finally, acquiring more
information on the properties of extra-Galactic sources will be necessary in
order to maximize the cosmological constraints extracted from CMBPol's
observations of CMB lensing. (abridged)Comment: 43 pages, 7 figures, 2 table
Gravitational lensing as a contaminant of the gravity wave signal in CMB
Gravity waves (GW) in the early universe generate B-type polarization in the
cosmic microwave background (CMB), which can be used as a direct way to measure
the energy scale of inflation. Gravitational lensing contaminates the GW signal
by converting the dominant E polarization into B polarization. By
reconstructing the lensing potential from CMB itself one can decontaminate the
B mode induced by lensing. We present results of numerical simulations of B
mode delensing using quadratic and iterative maximum-likelihood lensing
reconstruction methods as a function of detector noise and beam. In our
simulations we find the quadratic method can reduce the lensing B noise power
by up to a factor of 7, close to the no noise limit. In contrast, the iterative
method shows significant improvements even at the lowest noise levels we
tested. We demonstrate explicitly that with this method at least a factor of 40
noise power reduction in lensing induced B power is possible, suggesting that
T/S=10^-6 may be achievable in the absence of sky cuts, foregrounds, and
instrumental systematics. While we do not find any fundamental lower limit due
to lensing, we find that for high-sensitivity detectors residual lensing noise
dominates over the detector noise.Comment: 6 pages, 2 figures, submitted to PR
Separation of Spin and Charge Quantum Numbers in Strongly Correlated Systems
In this paper we reexamine the problem of the separation of spin and charge
degrees of freedom in two dimensional strongly correlated systems. We establish
a set of sufficient conditions for the occurence of spin and charge separation.
Specifically, we discuss this issue in the context of the Heisenberg model for
spin-1/2 on a square lattice with nearest () and next-nearest ()
neighbor antiferromagnetic couplings. Our formulation makes explicit the
existence of a local SU(2) gauge symmetry once the spin-1/2 operators are
replaced by bound states of spinons. The mean-field theory for the spinons is
solved numerically as a function of the ratio for the so-called s-RVB
Ansatz. A second order phase transition exists into a novel flux state for
. We identify the range as the s-RVB phase. It is characterized by the existence of a finite gap
to the elementary excitations (spinons) and the breakdown of all the continuous
gauge symmetries. An effective continuum theory for the spinons and the gauge
degrees of freedom is constructed just below the onset of the flux phase. We
argue that this effective theory is consistent with the deconfinement of the
spinons carrying the fundamental charge of the gauge group. We contrast this
result with the study of the one dimensional quantum antiferromagnet within the
same approach. We show that in the one dimensional model, the spinons of the
gauge picture are always confined and thus cannot be identified with the
gapless spin-1/2 excitations of the quantum antiferromagnet Heisenberg model.Comment: 56 pages, RevteX 3.
Unique genome-wide transcriptome profiles of chicken macrophages exposed to Salmonella-derived endotoxin
<p>Abstract</p> <p>Background</p> <p>Macrophages play essential roles in both innate and adaptive immune responses. Bacteria require endotoxin, a complex lipopolysaccharide, for outer membrane permeability and the host interprets endotoxin as a signal to initiate an innate immune response. The focus of this study is kinetic and global transcriptional analysis of the chicken macrophage response to <it>in vitro </it>stimulation with endotoxin from <it>Salmonella </it><it>typhimurium</it>-798.</p> <p>Results</p> <p>The 38535-probeset Affymetrix GeneChip Chicken Genome array was used to profile transcriptional response to endotoxin 1, 2, 4, and 8 hours post stimulation (hps). Using a maximum FDR (False Discovery Rate) of 0.05 to declare genes as differentially expressed (DE), we found 13, 33, 1761 and 61 DE genes between endotoxin-stimulated versus non-stimulated cells at 1, 2, 4 and 8 hps, respectively. QPCR demonstrated that endotoxin exposure significantly affected the mRNA expression of <it>IL1B</it>, <it>IL6</it>, <it>IL8</it>, and <it>TLR15</it>, but not <it>IL10 </it>and <it>IFNG </it>in HD 11 cells. Ingenuity Pathway Analysis showed that 10% of the total DE genes were involved in inflammatory response. Three, 9.7, 96.8, and 11.8% of the total DE inflammatory response genes were significantly differentially expressed with endotoxin stimulation at 1, 2, 4 and 8 hps, respectively. The <it>NFKBIA, IL1B, IL8 and CCL4 </it>genes were consistently induced at all times after endotoxin treatment. <it>NLRC5 </it>(CARD domain containing, NOD-like receptor family, RCJMB04_18i2), an intracellular receptor, was induced in HD11 cells treated with endotoxin.</p> <p>Conclusions</p> <p>As above using an <it>in vitro </it>model of chicken response to endotoxin, our data revealed the kinetics of gene networks involved in host response to endotoxin and extend the known complexity of networks in chicken immune response to Gram-negative bacteria such as <it>Salmonella</it>. The induction of <it>NFKBIA, IL1B, IL8, CCL4 </it>genes is a consistent signature of host response to endotoxin over time. We make the first report of induction of a NOD-like receptor family member in response to <it>Salmonella </it>endotoxin in chicken macrophages.</p
The mechanism of spin and charge separation in one dimensional quantum antiferromagnets
We reconsider the problem of separation of spin and charge in one dimensional
quantum antiferromagnets. We show that spin and charge separation in one
dimensional strongly correlated systems cannot be described by the slave boson
or fermion representation within any perturbative treatment of the interactions
between the slave holons and slave spinons. The constraint of single occupancy
must be implemented exactly. As a result the slave fermions and bosons are not
part of the physical spectrum. Instead, the excitations which carry the
separate spin and charge quantum numbers are solitons. To prove this {\it
no-go} result, it is sufficient to study the pure spinon sector in the slave
boson representation. We start with a short-range RVB spin liquid mean-field
theory for the frustrated antiferromagnetic spin- chain. We derive
an effective theory for the fluctuations of the Affleck-Marston and Anderson
order parameters. We show how to recover the phase diagram as a function of the
frustration by treating the fluctuations non-perturbatively.Comment: 53 pages; Revtex 3.
Observing the Evolution of the Universe
How did the universe evolve? The fine angular scale (l>1000) temperature and
polarization anisotropies in the CMB are a Rosetta stone for understanding the
evolution of the universe. Through detailed measurements one may address
everything from the physics of the birth of the universe to the history of star
formation and the process by which galaxies formed. One may in addition track
the evolution of the dark energy and discover the net neutrino mass.
We are at the dawn of a new era in which hundreds of square degrees of sky
can be mapped with arcminute resolution and sensitivities measured in
microKelvin. Acquiring these data requires the use of special purpose
telescopes such as the Atacama Cosmology Telescope (ACT), located in Chile, and
the South Pole Telescope (SPT). These new telescopes are outfitted with a new
generation of custom mm-wave kilo-pixel arrays. Additional instruments are in
the planning stages.Comment: Science White Paper submitted to the US Astro2010 Decadal Survey.
Full list of 177 author available at http://cmbpol.uchicago.ed
Cosmological parameters from SDSS and WMAP
We measure cosmological parameters using the three-dimensional power spectrum
P(k) from over 200,000 galaxies in the Sloan Digital Sky Survey (SDSS) in
combination with WMAP and other data. Our results are consistent with a
``vanilla'' flat adiabatic Lambda-CDM model without tilt (n=1), running tilt,
tensor modes or massive neutrinos. Adding SDSS information more than halves the
WMAP-only error bars on some parameters, tightening 1 sigma constraints on the
Hubble parameter from h~0.74+0.18-0.07 to h~0.70+0.04-0.03, on the matter
density from Omega_m~0.25+/-0.10 to Omega_m~0.30+/-0.04 (1 sigma) and on
neutrino masses from <11 eV to <0.6 eV (95%). SDSS helps even more when
dropping prior assumptions about curvature, neutrinos, tensor modes and the
equation of state. Our results are in substantial agreement with the joint
analysis of WMAP and the 2dF Galaxy Redshift Survey, which is an impressive
consistency check with independent redshift survey data and analysis
techniques. In this paper, we place particular emphasis on clarifying the
physical origin of the constraints, i.e., what we do and do not know when using
different data sets and prior assumptions. For instance, dropping the
assumption that space is perfectly flat, the WMAP-only constraint on the
measured age of the Universe tightens from t0~16.3+2.3-1.8 Gyr to
t0~14.1+1.0-0.9 Gyr by adding SDSS and SN Ia data. Including tensors, running
tilt, neutrino mass and equation of state in the list of free parameters, many
constraints are still quite weak, but future cosmological measurements from
SDSS and other sources should allow these to be substantially tightened.Comment: Minor revisions to match accepted PRD version. SDSS data and ppt
figures available at http://www.hep.upenn.edu/~max/sdsspars.htm
Astrometry and geodesy with radio interferometry: experiments, models, results
Summarizes current status of radio interferometry at radio frequencies
between Earth-based receivers, for astrometric and geodetic applications.
Emphasizes theoretical models of VLBI observables that are required to extract
results at the present accuracy levels of 1 cm and 1 nanoradian. Highlights the
achievements of VLBI during the past two decades in reference frames, Earth
orientation, atmospheric effects on microwave propagation, and relativity.Comment: 83 pages, 19 Postscript figures. To be published in Rev. Mod. Phys.,
Vol. 70, Oct. 199
Overview and status of EXCLAIM, the experiment for cryogenic large-aperture intensity mapping
The EXperiment for Cryogenic Large-Aperture Intensity Mapping (EXCLAIM) is a
balloon-borne far-infrared telescope that will survey star formation history
over cosmological time scales to improve our understanding of why the star
formation rate declined at redshift z < 2, despite continued clustering of dark
matter. Specifically,EXCLAIM will map the emission of redshifted carbon
monoxide and singly-ionized carbon lines in windows over a redshift range 0 < z
< 3.5, following an innovative approach known as intensity mapping. Intensity
mapping measures the statistics of brightness fluctuations of cumulative line
emissions instead of detecting individual galaxies, thus enabling a blind,
complete census of the emitting gas. To detect this emission unambiguously,
EXCLAIM will cross-correlate with a spectroscopic galaxy catalog. The EXCLAIM
mission uses a cryogenic design to cool the telescope optics to approximately
1.7 K. The telescope features a 90-cm primary mirror to probe spatial scales on
the sky from the linear regime up to shot noise-dominated scales. The telescope
optical elements couple to six {\mu}-Spec spectrometer modules, operating over
a 420-540 GHz frequency band with a spectral resolution of 512 and featuring
microwave kinetic inductance detectors. A Radio Frequency System-on-Chip
(RFSoC) reads out the detectors in the baseline design. The cryogenic telescope
and the sensitive detectors allow EXCLAIM to reach high sensitivity in spectral
windows of low emission in the upper atmosphere. Here, an overview of the
mission design and development status since the start of the EXCLAIM project in
early 2019 is presented.Comment: SPIE Astronomical Telescopes + Instrumentation. arXiv admin note:
substantial text overlap with arXiv:1912.0711
- …