5 research outputs found

    Synthesis and Purification of Peptide Nucleic Acids

    Full text link
    Peptide nucleic acids (PNAs) are DNA analogs in which the normal phosphodiester backbone is replaced by 2‐aminoethyl glycine linkages. Hybridization of PNAs with RNA or DNA follows normal rules for Watson‐Crick base pairing and occurs with high affinity. Thus, PNAs are a promising choice for applications that benefit from high‐affinity hybridization. They are assembled using techniques adapted from peptide chemistry. Protocols are given for both automated and manual synthesis of PNAs as well as their purification. The advantages of each method are discussed, as are the different monomers and reagents that are required. Additionally, protocols are given for adding peptides to PNAs (which can enhance hybridization or cell uptake of the PNA) and for adding a biotin label.Peer Reviewedhttps://deepblue.lib.umich.edu/bitstream/2027.42/143745/1/cpnc0411.pd

    Intracellular inhibition of hepatitis C virus (HCV) internal ribosomal entry site (IRES)-dependent translation by peptide nucleic acids (PNAs) and locked nucleic acids (LNAs)

    No full text
    Hepatitis C virus (HCV) is the major etiological agent of non-A, non-B hepatitis. Current therapies are not effective in all patients and can result in the generation of resistant mutants, leading to a need for new therapeutic options. HCV has an RNA genome that contains a well-defined and highly conserved secondary structure within the 5′-untranslated region. This structure is known as the internal ribosomal entry site (IRES) and is necessary for translation and viral replication. Here, we test the hypothesis that antisense peptide nucleic acid (PNA) and locked nucleic acid (LNA) oligomers can bind key IRES sequences and block translation. We used lipid-mediated transfections to introduce PNAs and LNAs into cells. Our data suggest that PNAs and LNAs can invade critical sequences within the HCV IRES and inhibit translation. Seventeen base PNA or LNA oligomers targeting different regions of the HCV IRES demonstrated a sequence-specific dose–response inhibition of translation with EC(50) values of 50–150 nM. Inhibition was also achieved by PNAs ranging in length from 15 to 21 bases. IRES-directed inhibition of gene expression widens the range of mechanisms for antisense inhibition by PNAs and LNAs and may provide further therapeutic lead compounds for the treatment of HCV
    corecore