179 research outputs found

    Understanding wind turbine power converter reliability under realistic wind conditions

    Get PDF
    The reliability of wind turbine power converters is crucial for analyzing wind energy project costs, and for estimating maintenance and downtime. The published literature in this field relies on evaluating the reliability effect of wind speed to estimate the converter lifetime. However, this paper demonstrates that wind turbulence intensity, which has not been widely considered in similar reliability analyses, shows a significant impact on converter lifetime. This paper uses 821 10‐min wind speed time series sampled at 1 Hz on the two most commonly deployed wind turbine converter topologies: the two‐level voltage source and the three‐level neutral point clamped. Electromechanical and thermal modelling, combined with statistical analysis shows that mean wind speed and turbulence intensity both impact the lifetime of both converter topologies. However, the paper estimates that the three‐level converter can operate 2.4 to 4.0 times longer than the two‐level converter depending on the operating wind speed and turbulence intensity

    Iliac fixation inhibits migration of both suprarenal and infrarenal aortic endografts

    Get PDF
    ObjectiveTo evaluate the role of iliac fixation in preventing migration of suprarenal and infrarenal aortic endografts.MethodsQuantitative image analysis was performed in 92 patients with infrarenal aortic aneurysms (76 men and 16 women) treated with suprarenal (n = 36) or infrarenal (n = 56) aortic endografts from 2000 to 2004. The longitudinal centerline distance from the superior mesenteric artery to the top of the stent graft was measured on preoperative, postimplantation, and 1-year three-dimensional computed tomographic scans, with movement more than 5 mm considered to be significant. Aortic diameters were measured perpendicular to the centerline axis. Proximal and distal fixation lengths were defined as the lengths of stent-graft apposition to the aortic neck and the common iliac arteries, respectively.ResultsThere were no significant differences in age, comorbidities, or preoperative aneurysm size (suprarenal, 6.0 cm; infrarenal, 5.7 cm) between the suprarenal and infrarenal groups. However, the suprarenal group had less favorable aortic necks with a shorter length (13 vs 25 mm; P < .0001), a larger diameter (27 vs 24 mm; P < .0001), and greater angulation (19° vs 11°; P = .007) compared with the infrarenal group. The proximal aortic fixation length was greater in the suprarenal than in the infrarenal group (22 vs 16 mm; P < .0001), with the top of the device closer to the superior mesenteric artery (8 vs 21 mm; P < .0001) as a result of the 15-mm uncovered suprarenal stent. There was no difference in iliac fixation length between the suprarenal and infrarenal groups (26 vs 25 mm; P = .8). Longitudinal centerline stent graft movement at 1 year was similar in the suprarenal and infrarenal groups (4.3 ± 4.4 mm vs 4.8 ± 4.3 mm; P = .6). Patients with longitudinal centerline movement of more than 5 mm at 1 year or clinical evidence of migration at any time during the follow-up period comprised the respective migrator groups. Suprarenal migrators had a shorter iliac fixation length (17 vs 29 mm; P = .006) and a similar aortic fixation length (23 vs 22 mm; P > .999) compared with suprarenal nonmigrators. Infrarenal migrators had a shorter iliac fixation length (18 vs 30 mm; P < .0001) and a similar aortic fixation length (14 vs 17 mm; P = .1) compared with infrarenal nonmigrators. Nonmigrators had closer device proximity to the hypogastric arteries in both the suprarenal (7 vs 17 mm; P = .009) and infrarenal (8 vs 24 mm; P < .0001) groups. No migration occurred in either group in patients with good iliac fixation. Multivariate logistic regression analysis revealed that iliac fixation, as evidenced by iliac fixation length (P = .004) and the device to hypogastric artery distance (P = .002), was a significant independent predictor of migration, whereas suprarenal or infrarenal treatment was not a significant predictor of migration. During a clinical follow-up period of 45 ± 22 months (range, 12-70 months), there have been no aneurysm ruptures, abdominal aortic aneurysm–related deaths, or surgical conversions in either group.ConclusionsDistal iliac fixation is important in preventing migration of both suprarenal and infrarenal aortic endografts that have longitudinal columnar support. Secure iliac fixation minimizes the risk of migration despite suboptimal proximal aortic neck anatomy. Extension of both iliac limbs to cover the entire common iliac artery to the iliac bifurcation seems to prevent endograft migration

    Bitopic binding mode of an M1 muscarinic acetylcholine receptor agonist associated with adverse clinical trial outcomes

    Get PDF
    The realisation of the therapeutic potential of targeting the M1 muscarinic acetylcholine receptor (M1 mAChR) for the treatment of cognitive decline in Alzheimer's disease has prompted the discovery of M1 mAChR ligands showing efficacy in alleviating cognitive dysfunction in both rodents and humans. Among these is GSK1034702, described previously as a potent M1 receptor allosteric agonist, which showed pro-cognitive effects in rodents and improved immediate memory in a clinical nicotine withdrawal test but induced significant side-effects. Here we provide evidence using ligand binding, chemical biology and functional assays to establish that rather than the allosteric mechanism claimed, GSK1034702 interacts in a bitopic manner at the M1 mAChR such that it can concomitantly span both the orthosteric and an allosteric binding site. The bitopic nature of GSK1034702 together with the intrinsic agonist activity and a lack of muscarinic receptor subtype selectivity reported here, all likely contribute to the adverse effects of this molecule in clinical trials. We conclude that these properties, whilst imparting beneficial effects on learning and memory, are undesirable in a clinical candidate due to the likelihood of adverse side effects. Rather, our data supports the notion that "pure" positive allosteric modulators showing selectivity for the M1 mAChR with low levels of intrinsic activity would be preferable to provide clinical efficacy with low adverse responses

    Effect of a Web-Based Behavior Change Program on Weight Loss and Cardiovascular Risk Factors in Overweight and Obese Adults at High Risk of Developing Cardiovascular Disease: Randomized Controlled Trial.

    Get PDF
    Web-based programs are a potential medium for supporting weight loss because of their accessibility and wide reach. Research is warranted to determine the shorter- and longer-term effects of these programs in relation to weight loss and other health outcomes

    Modes of activation of organometallic iridium complexes for catalytic water and C–H oxidation

    Get PDF
    Sodium periodate (NaIO4) is added to Cp*Ir-III (Cp* = C5Me5-) or (cod)Ir-I (cod = cyclooctadiene) complexes, which are water and C-H oxidation catalyst precursors, and the resulting aqueous reaction is investigated from milliseconds to seconds using desorption electrospray ionization, electrosonic spray ionization, and cryogenic ion vibrational predissociation spectroscopy. Extensive oxidation of the Cp* ligand is observed, likely beginning with electrophilic C-H hydroxylation of a Cp* methyl group followed by nonselective pathways of further oxidative degradation. Evidence is presented that the supporting chelate ligand in Cp*Ir(chelate) precursors influences the course of oxidation and is neither eliminated from the coordination sphere nor oxidatively transformed. Isomeric products of initial Cp* oxidation are identified and structurally characterized by vibrational spectroscopy in conjunction with density functional theory (DFT) modeling. Less extensive but more rapid oxidation of the cod ligand is also observed in the (cod)Ir-I complexes. The observations are consistent with the proposed role of Cp* and cod as sacrificial placeholder ligands that are oxidatively removed from the precursor complexes under catalytic conditions.Chemistry, Inorganic &amp; NuclearSCI(E)[email protected]; [email protected]

    Dynamics of BAF- Polycomb Complex Opposition on Heterochromatin in Normal and Oncogenic States

    Get PDF
    The opposition between polycomb repressive complexes (PRC) and BAF (mSWI/SNF) complexes plays critical roles in development and disease. Mutations in the genes encoding BAF subunits contribute to over 20% of human malignancy, yet the underlying mechanisms remain unclear owing largely to a lack of assays to assess BAF function in vivo. To address this, we have developed a widely applicable recruitment assay system and find that BAF opposes PRC by rapid, ATP-dependent eviction, leading to the formation of accessible chromatin. Reversing this process results in reassembly of facultative heterochromatin. Surprisingly, BAF-mediated PRC eviction occurs in the absence of PolII occupancy, transcription, and replication. Further, we find that tumor suppressor and oncogenic BAF complex mutations result in differential effects on PRC eviction. These studies define a mechanistic sequence underlying the resolution and formation of facultative heterochromatin and demonstrate that BAF opposes polycomb complexes on a minute-by-minute basis to provide epigenetic plasticity

    pH-sensitive release of nitric oxide gas using peptide-graphene co-assembled hybrid nanosheets

    Get PDF
    Nitric oxide (NO) donating drugs such as organic nitrates have been used to treat cardiovascular diseases for more than a century. These donors primarily produce NO systemically. It is however sometimes desirable to control the amount, location, and time of NO delivery. We present the design of a novel pH-sensitive NO release system that is achieved by the synthesis of dipeptide diphenylalanine (FF) and graphene oxide (GO) co-assembled hybrid nanosheets (termed as FF@GO) through weak molecular interactions. These hybrid nanosheets were characterised by using X-ray diffraction, Raman spectroscopy, Fourier transform infrared spectroscopy, zeta potential measurements, X-ray photoelectron spectroscopy, scanning and transmission electron microscopies. The weak molecular interactions, which include electrostatic, hydrogen bonding and π-π stacking, are pH sensitive due to the presence of carboxylic acid and amine functionalities on GO and the dipeptide building blocks. Herein, we demonstrate that this formulation can be loaded with NO gas with the dipeptide acting as an arresting agent to inhibit NO burst release at neutral pH; however, at acidic pH it is capable of releasing NO at the rate of up to 0.6 μM per minute, comparable to the amount of NO produced by healthy endothelium. In conclusion, the innovative conjugation of dipeptide with graphene can store and release NO gas under physiologically relevant concentrations in a pH-responsive manner. pH responsive NO-releasing organic-inorganic nanohybrids may prove useful for the treatment of cardiovascular diseases and other pathologies
    corecore