117 research outputs found

    Dissecting regulatory T cell expansion using polymer microparticles presenting defined ratios of self-antigen and regulatory cues

    Get PDF
    Biomaterials allow for the precision control over the combination and release of cargo needed to engineer cell outcomes. These capabilities are particularly attractive as new candidate therapies to treat autoimmune diseases, conditions where dysfunctional immune cells create pathogenic tissue environments during attack of self-molecules termed self-antigens. Here we extend past studies showing combinations of a small molecule immunomodulator co-delivered with self-antigen induces antigen-specific regulatory T cells. In particular, we sought to elucidate how different ratios of these components loaded in degradable polymer particles shape the antigen presenting cell (APC) -T cell interactions that drive differentiation of T cells toward either inflammatory or regulatory phenotypes. Using rapamycin (rapa) as a modulatory cue and myelin self-peptide (myelin oligodendrocyte glycoprotein- MOG) – self-antigen attacked during multiple sclerosis (MS), we integrate these components into polymer particles over a range of ratios and concentrations without altering the physicochemical properties of the particles. Using primary cell co-cultures, we show that while all ratios of rapa:MOG significantly decreased expression of co-stimulation molecules on dendritic cells (DCs), these levels were insensitive to the specific ratio. During co-culture with primary T cell receptor transgenic T cells, we demonstrate that the ratio of rapa:MOG controls the expansion and differentiation of these cells. In particular, at shorter time points, higher ratios induce regulatory T cells most efficiently, while at longer time points the processes are not sensitive to the specific ratio. We also found corresponding changes in gene expression and inflammatory cytokine secretion during these times. The in vitro results in this study contribute to in vitro regulatory T cell expansion techniques, as well as provide insight into future studies to explore other modulatory effects of rapa such as induction of maintenance or survival cues

    Dual molecular mechanisms govern escape at immunodominant HLA A2-restricted HIV epitope

    Get PDF
    Serial accumulation of mutations to fixation in the SLYNTVATL (SL9) immunodominant, HIV p17 Gag-derived, HLA A2-restricted CTL epitope produce the SLFNTIAVL triple mutant ‘ultimate’ escape variant. These mutations in solvent-exposed residues are believed to interfere with TCR recognition, although confirmation has awaited structural verification. Here, we solved a TCR co-complex structure with SL9 and the triple escape mutant to determine the mechanism of immune escape in this eminent system. We show that, in contrast to prevailing hypotheses, the main TCR contact residue is 4N and the dominant mechanism of escape is not via lack of TCR engagement. Instead, mutation of solvent exposed residues in the peptide destabilize the peptide-HLA and reduce peptide density at the cell surface. These results highlight the extraordinary lengths that HIV employs to evade detection by high-affinity TCRs with a broad peptide-binding footprint and necessitate reevaluation of this exemplar model of HIV TCR escape

    CD8+ T-­cell specificity is compromised at a defined major histocompatibility complex class I/CD8 affinity threshold

    Get PDF
    The CD8 co-receptor engages peptide-major histocompatibility complex class I (pMHCI) molecules at a largely invariant site distinct from the T-cell receptor (TCR)-binding platform and enhances the sensitivity of antigen-driven activation to promote effective CD8+ T-cell immunity. A small increase in the strength of the pMHCI/CD8 interaction (~1.5-fold) can disproportionately amplify this effect, boosting antigen sensitivity by up to two orders of magnitude. However, recognition specificity is lost altogether with more substantial increases in pMHCI/CD8 affinity (~10-fold). In this study, we used a panel of MHCI mutants with altered CD8-binding properties to show that TCR-mediated antigen specificity is delimited by a pMHCI/CD8 affinity threshold. Our findings suggest that CD8 can be engineered within certain biophysical parameters to enhance the therapeutic efficacy of adoptive T-cell transfer irrespective of antigen specificity

    CD8+ T-cell specificity is compromised at a defined MHCI/CD8 affinity threshold

    Get PDF
    The CD8 co-receptor engages peptide-major histocompatibility complex class I (pMHCI) molecules at a largely invariant site distinct from the T-cell receptor (TCR)-binding platform and enhances the sensitivity of antigen-driven activation to promote effective CD8+ T-cell immunity. A small increase in the strength of the pMHCI/CD8 interaction (~1.5-fold) can disproportionately amplify this effect, boosting antigen sensitivity by up to two orders of magnitude. However, recognition specificity is lost altogether with more substantial increases in pMHCI/CD8 affinity (~10-fold). In this study, we used a panel of MHCI mutants with altered CD8-binding properties to show that TCR-mediated antigen specificity is delimited by a pMHCI/CD8 affinity threshold. Our findings suggest that CD8 can be engineered within certain biophysical parameters to enhance the therapeutic efficacy of adoptive T-cell transfer irrespective of antigen specificity

    CD8+ T-cell specificity is compromised at a defined MHCI/CD8 affinity threshold

    Get PDF
    The CD8 coreceptor engages peptide-major histocompatibility complex class I (pMHCI) molecules at a largely invariant site distinct from the T-cell receptor (TCR) binding platform and enhances the sensitivity of antigen-driven activation to promote effective CD8+ T-cell immunity. A small increase in the strength of the pMHCI/CD8 interaction (~ 1.5-fold) can disproportionately amplify this effect, boosting antigen sensitivity by up to two orders of magnitude. However, recognition specificity is lost altogether with more substantial increases in pMHCI/CD8 affinity (~ 10-fold). In this study, we used a panel of MHCI mutants with altered CD8 binding properties to show that TCR-mediated antigen specificity is delimited by a pMHCI/CD8 affinity threshold. Our findings suggest that CD8 can be engineered within certain biophysical parameters to enhance the therapeutic efficacy of adoptive T-cell transfer irrespective of antigen specificity. The pMHCI/CD8 interaction controls specificit

    Asymmetry in student achievement on multiple choice and constructed response items in reversible mathematics processes

    Get PDF
    In this paper we report the results of an experiment designed to test the hypothesis that when faced with a question involving the inverse direction of a reversible mathematical process, students solve a multiple-choice version by verifying the answers presented to them by the direct method, not by undertaking the actual inverse calculation. Participants responded to an online test contain- ing equivalent multiple-choice and constructed-response items in two reversible algebraic techniques: factor/expand and solve/verify. The ndings supported this hypothesis: Overall scores were higher in the multiple-choice condition compared to the constructed-response condition, but this advantage was significantly greater for items concerning the inverse direction of reversible processes compared to those involving direct processes

    A perspective on time: loss frequencies, time scales and lifetimes

    Full text link
    Environmental context. The need to describe the Earth’s system or any of its components with a quantity that has units of time is ubiquitous. These quantities are used as metrics of the system to describe the response to a perturbation, the cumulative effect of an action or just the budget in terms of sources and sinks.Given a complex, non-linear system, there are many different ways to derive such quantities, and careful definitions are needed to avoid mistaken approximations while providing useful parameters describing the system. Abstract. Diagnostic quantities involving time include loss frequency, decay times or time scales and lifetimes. For the Earth’s system or any of its components, all of these are calculated differently and have unique diagnostic properties. Local loss frequency is often assumed to be a simple, linear relationship between a species and its loss rate, but this fails in many important cases of atmospheric chemistry where reactions couple across species. Lifetimes, traditionally defined as total burden over loss rate, are mistaken for a time scale that describes the complete temporal behaviour of the system. Three examples here highlight: local loss frequencies with non-linear chemistry (tropospheric ozone); simple atmospheric chemistry with multiple reservoirs (methyl bromide) and fixed chemistry but evolving lifetimes (methyl chloroform). These are readily generalised to other biogeochemistry and Earth system models

    Consensus guidelines for the use and interpretation of angiogenesis assays

    Get PDF
    The formation of new blood vessels, or angiogenesis, is a complex process that plays important roles in growth and development, tissue and organ regeneration, as well as numerous pathological conditions. Angiogenesis undergoes multiple discrete steps that can be individually evaluated and quantified by a large number of bioassays. These independent assessments hold advantages but also have limitations. This article describes in vivo, ex vivo, and in vitro bioassays that are available for the evaluation of angiogenesis and highlights critical aspects that are relevant for their execution and proper interpretation. As such, this collaborative work is the first edition of consensus guidelines on angiogenesis bioassays to serve for current and future reference

    Finishing the euchromatic sequence of the human genome

    Get PDF
    The sequence of the human genome encodes the genetic instructions for human physiology, as well as rich information about human evolution. In 2001, the International Human Genome Sequencing Consortium reported a draft sequence of the euchromatic portion of the human genome. Since then, the international collaboration has worked to convert this draft into a genome sequence with high accuracy and nearly complete coverage. Here, we report the result of this finishing process. The current genome sequence (Build 35) contains 2.85 billion nucleotides interrupted by only 341 gaps. It covers ∼99% of the euchromatic genome and is accurate to an error rate of ∼1 event per 100,000 bases. Many of the remaining euchromatic gaps are associated with segmental duplications and will require focused work with new methods. The near-complete sequence, the first for a vertebrate, greatly improves the precision of biological analyses of the human genome including studies of gene number, birth and death. Notably, the human enome seems to encode only 20,000-25,000 protein-coding genes. The genome sequence reported here should serve as a firm foundation for biomedical research in the decades ahead
    corecore