23 research outputs found

    Dynamic Precedence Effect Modeling for Source Separation in Reverberant Environments

    Full text link

    A psychoacoustic engineering approach to machine sound source separation in reverberant environments.

    No full text
    Reverberation continues to present a major problem for sound source separation algorithms, due to its corruption of many of the acoustical cues on which these algorithms rely. However, humans demonstrate a remarkable robustness to reverberation and many psychophysical and perceptual mechanisms are well documented. This thesis therefore considers the research question; can the reverberation-performance of existing psychoacoustic engineering approaches to machine source separation be improved. The precedence effect is a perceptual mechanism that aids our ability to localise sounds in reverberant environments. Despite this, relatively little work has been done on incorporating the precedence effect into automated sound source separation. Consequently, a study was conducted that compared several computational precedence models and their impact on the performance of a baseline separation algorithm. The algorithm included a precedence model, which was replaced with the other precedence models during the investigation. The models were tested using a novel metric in a range of reverberant rooms and with a range of other mixture parameters. The metric, termed Ideal Binary Mask Ratio, is shown to be robust to the effects of reverberation and facilitates meaningful and direct comparison between algorithms across different acoustic conditions. Large differences between the performances of the models were observed. The results showed that a separation algorithm incorporating a model based on interaural coherence produces the greatest performance gain over the baseline algorithm. The results from the study also indicated that it may be necessary to adapt the precedence model to the acoustic conditions in which the model is utilised. This effect is analogous to the perceptual Clifton effect, which is a dynamic component of the precedence effect that appears to adapt precedence to a given acoustic environment in order to maximise its effectiveness. However, no work has been carried out on adapting a precedence model to the acoustic conditions under test. Specifically, although the necessity for such a component has been suggested in the literature, neither its necessity nor benefit has been formally validated. Consequently, a further study was conducted in which parameters of each of the previously compared precedence models were varied in each room in order to identify if, and to what extent, the separation performance varied with these parameters. The results showed that the reverberation-performance of existing psychoacoustic engineering approaches to machine source separation can be improved and can yield significant gains in separation performance

    On the Ideal Ratio Mask as the Goal of Computational Auditory Scene Analysis

    No full text
    The ideal binary mask (IBM) is widely considered to be the benchmark for time–frequency-based sound source separation techniques such as computational auditory scene analysis (CASA). However, it is well known that binary masking introduces objectionable distortion, especially musical noise. This can make binary masking unsuitable for sound source separation applications where the output is auditioned. It has been suggested that soft masking reduces musical noise and leads to a higher quality output. A previously defined soft mask, the ideal ratio mask (IRM), is found to have similar properties to the IBM, may correspond more closely to auditory processes, and offers additional computational advantages. Consequently, the IRM is proposed as the goal of CASA. To further support this position, a number of studies are reviewed that show soft masks to provide superior performance to the IBM in applications such as automatic speech recognition and speech intelligibility. A brief empirical study provides additional evidence demonstrating the objective and perceptual superiority of the IRM over the IBM

    A Perceptually–Inspired Approach to Machine Sound Source Separation in Real Rooms

    No full text
    Automated separation of the constituent signals of complex mixtures of sound has made significant progress over the last two decades. Unfortunately, completing this task in real rooms, where echoes and reverberation are prevalent, continues to present a significant challenge. Conversely, humans demonstrate a remarkable robustness to reverberation. An overview is given of a project that set out to model some of the aspects of human auditory perception in order to improve the efficacy of machine sound source separation in real rooms. Using this approach, the models that were developed achieved a significant improvement in separation performance. The project also showed that existing models of human auditory perception are markedly incomplete and work is currently being undertaken to model additional aspects that had previously been neglected. Work completed so far has shown that an even greater improvement in separation performance will be possible. The work could have many applications, including intelligent hearing aids and intelligent security cameras, and could be incorporated in to many other products that perform automated listening tasks, such as speech recognition, speech enhancement, noise reduction and medical transcription

    A Comparison of Computational Precedence Models for Source Separation in Reverberant Environments

    No full text
    Reverberation is a problem for source separation algorithms. Because the precedence effect allows human listeners to suppress the perception of reflections arising from room boundaries, numerous computational models have incorporated the precedence effect. However, relatively little work has been done on using the precedence effect in source separation algorithms. This paper compares several precedence models and their influence on the performance of a baseline separation algorithm. The models were tested in a variety of reverberant rooms and with a range of mixing parameters. Although there was a large difference in performance among the models, the one that was based on interaural coherence and onset-based inhibition produced the greatest performance improvement. There is a trade-off between selecting reliable cues that correspond closely to free-field conditions and maximizing the proportion of the input signals that contributes to localization. For optimal source separation performance, it is necessary to adapt the dynamic component of the precedence model to the acoustic conditions of the room

    Dynamic precedence effect modeling for source separation in reverberant environments

    Get PDF
    Reverberation continues to present a major problem for sound source separation algorithms. However, humans demonstrate a remarkable robustness to reverberation and many psychophysical and perceptual mechanisms are well documented. The precedence effect is one of these mechanisms; it aids our ability to localize sounds in reverberation. Despite this, relatively little work has been done on incorporating the precedence effect into automated source separation. Furthermore, no work has been carried out on adapting a precedence model to the acoustic conditions under test and it is unclear whether such adaptation, analogous to the perceptual Clifton effect, is even necessary. Hence, this study tests a previously proposed binaural separation/precedence model in real rooms with a range of reverberant conditions. The precedence model inhibitory time constant and inhibitory gain are varied in each room in order to establish the necessity for adaptation to the acoustic conditions. The paper concludes that adaptation is necessary and can yield significant gains in separation performance. Furthermore, it is shown that the initial time delay gap and the direct-to-reverberant ratio are important factors when considering this adaptation

    Dynamic precedence effect modeling for source separation in reverberant environments

    No full text
    Reverberation continues to present a major problem for sound source separation algorithms. However, humans demonstrate a remarkable robustness to reverberation and many psychophysical and perceptual mechanisms are well documented. The precedence effect is one of these mechanisms; it aids our ability to localize sounds in reverberation. Despite this, relatively little work has been done on incorporating the precedence effect into automated source separation. Furthermore, no work has been carried out on adapting a precedence model to the acoustic conditions under test and it is unclear whether such adaptation, analogous to the perceptual Clifton effect, is even necessary. Hence, this study tests a previously proposed binaural separation/precedence model in real rooms with a range of reverberant conditions. The precedence model inhibitory time constant and inhibitory gain are varied in each room in order to establish the necessity for adaptation to the acoustic conditions. The paper concludes that adaptation is necessary and can yield significant gains in separation performance. Furthermore, it is shown that the initial time delay gap and the direct-to-reverberant ratio are important factors when considering this adaptation

    Ideal Binary Mask Ratio: a novel metric for assessing binary-mask-based sound source separation algorithms

    Get PDF
    A number of metrics has been proposed in the literature to assess sound source separation algorithms. The addition of convolutional distortion raises further questions about the assessment of source separation algorithms in reverberant conditions as reverberation is shown to undermine the optimality of the ideal binary mask (IBM) in terms of signal-to-noise ratio (SNR). Furthermore, with a range of mixture parameters common across numerous acoustic conditions, SNR–based metrics demonstrate an inconsistency that can only be attributed to the convolutional distortion. This suggests the necessity for an alternate metric in the presence of convolutional distortion, such as reverberation. Consequently, a novel metric—dubbed the IBM ratio (IBMR)—is proposed for assessing source separation algorithms that aim to calculate the IBM. The metric is robust to many of the effects of convolutional distortion on the output of the system and may provide a more representative insight into the performance of a given algorithm
    corecore