1,237 research outputs found

    Myopia in late adolescence and subsequent multiple sclerosis among men

    Get PDF
    BACKGROUND: Risk factors such as low vitamin D level has been implicated in the etiology of multiple sclerosis (MS) and may be relevant to myopia, such that there may be an association between myopia and MS. METHODS: Using linked Swedish national register data, we conducted a cohort study of men who were born in Sweden between 1950 and 1992, lived in Sweden between 1990 and 2018, and enrolled in military conscription assessment (n = 1,847,754). Myopia was defined based on the spherical equivalent refraction measured at conscription assessment, around age 18 years. Multiple sclerosis was identified using the Patient Register. Cox regression produced hazard ratios (HR) with 95% confidence intervals (95% CI), with adjustment for demographic and childhood socioeconomic characteristics and residential region. Due to changes in the assessment of refractive error, the analysis was stratified into two groups by the year of conscription assessment: 1969-1997 and 1997-2010. RESULTS: Among 1,559,859 individuals during a maximum of 48 years of follow-up from age 20 to 68 years (44,715,603 person-years), there were 3,134 MS events, and the incidence rate 7.0 (95% CI [6.8, 7.3] per 100,000 person-years). Among individuals with conscription assessments during 1997-2010, there were 380 MS events. There was no evidence of an association between myopia and MS, with HR 1.09 (95% CI 0.83, 1.43). Among individuals who underwent conscription assessment in 1969-1997, there were 2754 MS events. After adjusting for all covariates, there was no evidence of an association between myopia and MS (HR 0.99 [95% CI 0.91, 1.09]). CONCLUSION: Myopia in late adolescence is not associated with a subsequent raised risk of MS and thus there does not appear to be important shared risk factors

    Appetitive motivation and associated neurobiology change differentially across the life course of mouse offspring exposed to peri- and postnatal high fat feeding

    Get PDF
    Alterations in neural pathways that regulate appetitive motivation may contribute to increased obesity risk in offspring born to mothers fed a high fat (HF) diet. However, current findings on the impact of maternal obesity on motivation in offspring are inconclusive, and there is no information about the long-lasting effects in aged animals. This study examined the longitudinal effect of perinatal and chronic postnatal HF intake on appetitive motivation in young and aged offspring. Female C57Bl/6 were fed either a control (C) or HF diet before mating through to lactation. At weaning, offspring were maintained on the C or HF diet, generating the following four diet groups: C/C, C/HF, HF/C, and HF/HF based on the pre/post weaning diet. At 6 months, motivation was higher in HF/C females, but lower in male and female C/HF and HF/HF mice. By 12 months, this difference was lost, as C-fed animals became less motivated, while motivation increased in HF-fed mice. The mRNA levels of dopamine receptor 1 and 2 increased with age, while cannabinoid receptor 1 and μ-opioid receptor expression remained stable or decreased in mesolimbic and mesocortical dopaminergic pathways. Results from this study suggest that perinatal and chronic postnatal HF feeding produced opposite effects on appetitive motivation in young adult offspring mice, which was also reflected in the shift in motivation over time. These results have significant implications for patterns of hedonic eating across the life course and the relative risk of obesity at different time points

    "Big Food", the consumer food environment, health and the policy response in South Africa

    Get PDF
    Summary Points: * In South Africa, as in other jurisdictions, ‘‘Big Food’’ (large commercial entities that dominate the food and beverage environment) is becoming more widespread and is implicated in unhealthy eating. * ‘‘Small food’’ remains significant in the food environment in South Africa, and it is both linked with, and threatened by, Big Food. * Big Food in South Africa involves South African companies, some of which have invested in other (mainly, but not only, African) nations, as well as companies headquartered in North America and Europe. * These companies have developed strategies to increase the availability, affordability, and acceptability of their foods in South Africa; they have also developed a range of ‘‘health and wellness’’ initiatives. Whether these initiatives have had a net positive or net negative impact is not clear. The South African government should act urgently to mitigate the adverse health effects in the food environment in South Africa through education about the health risks of unhealthy diets, regulation of Big Food, and support for healthy foods.Web of Scienc

    Factors that influence exercise activity among women post hip fracture participating in the Exercise Plus Program

    Get PDF
    Using a social ecological model, this paper describes selected intra- and interpersonal factors that influence exercise behavior in women post hip fracture who participated in the Exercise Plus Program. Model testing of factors that influence exercise behavior at 2, 6 and 12 months post hip fracture was done. The full model hypothesized that demographic variables; cognitive, affective, physical and functional status; pain; fear of falling; social support for exercise, and exposure to the Exercise Plus Program would influence self-efficacy, outcome expectations, and stage of change both directly and indirectly influencing total time spent exercising. Two hundred and nine female hip fracture patients (age 81.0 ± 6.9), the majority of whom were Caucasian (97%), participated in this study. The three predictive models tested across the 12 month recovery trajectory suggest that somewhat different factors may influence exercise over the recovery period and the models explained 8 to 21% of the variance in time spent exercising. To optimize exercise activity post hip fracture, older adults should be helped to realistically assess their self-efficacy and outcome expectations related to exercise, health care providers and friends/peers should be encouraged to reinforce the positive benefits of exercise post hip fracture, and fear of falling should be addressed throughout the entire hip fracture recovery trajectory

    Late Holocene sea- and land-level change on the U.S. southeastern Atlantic coast

    Get PDF
    Late Holocene relative sea-level (RSL) reconstructions can be used to estimate rates of land-level (subsidence or uplift) change and therefore to modify global sea-level projections for regional conditions. These reconstructions also provide the long-term benchmark against which modern trends are compared and an opportunity to understand the response of sea level to past climate variability. To address a spatial absence of late Holocene data in Florida and Georgia, we reconstructed ~ 1.3 m of RSL rise in northeastern Florida (USA) during the past ~ 2600 years using plant remains and foraminifera in a dated core of high salt-marsh sediment. The reconstruction was fused with tide-gauge data from nearby Fernandina Beach, which measured 1.91 ± 0.26 mm/year of RSL rise since 1900 CE. The average rate of RSL rise prior to 1800 CE was 0.41 ± 0.08 mm/year. Assuming negligible change in global mean sea level from meltwater input/removal and thermal expansion/contraction, this sea-level history approximates net land-level (subsidence and geoid) change, principally from glacio-isostatic adjustment. Historic rates of rise commenced at 1850–1890 CE and it is virtually certain (P = 0.99) that the average rate of 20th century RSL rise in northeastern Florida was faster than during any of the preceding 26 centuries. The linearity of RSL rise in Florida is in contrast to the variability reconstructed at sites further north on the U.S. Atlantic coast and may suggest a role for ocean dynamic effects in explaining these more variable RSL reconstructions. Comparison of the difference between reconstructed rates of late Holocene RSL rise and historic trends measured by tide gauges indicates that 20th century sea-level trends along the U.S. Atlantic coast were not dominated by the characteristic spatial fingerprint of melting of the Greenland Ice Sheet

    Modern foraminifera, δ\u3csup\u3e13\u3c/sup\u3eC, and bulk geochemistry of central Oregon tidal marshes and their application in paleoseismology

    Get PDF
    We assessed the utility of δ13C and bulk geochemistry (total organic content and C:N) to reconstruct relative sea-level changes on the Cascadia subduction zone through comparison with an established sea-level indicator (benthic foraminifera). Four modern transects collected from three tidal environments at Siletz Bay, Oregon, USA, produced three elevation-dependent groups in both the foraminiferal and δ13C/bulk geochemistry datasets. Foraminiferal samples from the tidal flat and low marsh are identified by Miliammina fusca abundances of \u3e 45%, middle and high marsh by M. fusca abundances of \u3c 45% and the highest marsh by Trochamminita irregularis abundances \u3e 25%. The δ13C values from the groups defined with δ13C/bulk geochemistry analyses decrease with an increasing elevation; − 24.1 ± 1.7‰ in the tidal flat and low marsh; − 27.3 ± 1.4‰ in the middle and high marsh; and − 29.6 ± 0.8‰ in the highest marsh samples. We applied the modern foraminiferal and δ13C distributions to a core that contained a stratigraphic contact marking the great Cascadia earthquake of AD 1700. Both techniques gave similar values for coseismic subsidence across the contact (0.88 ± 0.39 m and 0.71 ± 0.56 m) suggesting that δ13C has potential for identifying amounts of relative sea-level change due to tectonics

    Relative sea-level change in Connecticut (USA) during the last 2200 yrs

    Get PDF
    We produced a relative sea-level (RSL) reconstruction from Connecticut (USA) spanning the last ∼2200 yrs that is free from the influence of sediment compaction. The reconstruction used a suite of vertically- and laterally-ordered sediment samples ≤2 cm above bedrock that were collected by excavating a trench along an evenly-sloped bedrock surface. Paleomarsh elevation was reconstructed using a regional-scale transfer function trained on the modern distribution of foraminifera on Long Island Sound salt marshes and supported by bulk-sediment δ13C measurements. The history of sediment accumulation was estimated using an age-elevation model constrained by radiocarbon dates and recognition of pollution horizons of known age. The RSL reconstruction was combined with regional tide-gauge measurements spanning the last ∼150 yrs before being quantitatively analyzed using an error-in-variables integrated Gaussian process model to identify sea-level trends with formal and appropriate treatment of uncertainty and the temporal distribution of data. RSL rise was stable (∼1 mm/yr) from ∼200 BCE to ∼1000 CE, slowed to a minimum rate of rise (0.41 mm/yr) at ∼1400 CE, and then accelerated continuously to reach a current rate of 3.2 mm/yr, which is the fastest, century-scale rate of the last 2200 yrs. Change point analysis identified that modern rates of rise in Connecticut began at 1850–1886 CE. This timing is synchronous with changes recorded at other sites on the U.S. Atlantic coast and is likely the local expression of a global sea-level change. Earlier sea-level trends show coherence north of Cape Hatteras that are contrasted with southern sites. This pattern may represent centennial-scale variability in the position and/or strength of the Gulf Stream. Comparison of the new record to three existing and reanalyzed RSL reconstructions from the same site developed using sediment cores indicates that compaction is unlikely to significantly distort RSL reconstructions produced from shallow (∼2–3 m thick) sequences of salt-marsh peat

    A maximum rupture model for the central and southern Cascadia subduction zone—reassessing ages for coastal evidence of megathrust earthquakes and tsunamis

    Get PDF
    A new history of great earthquakes (and their tsunamis) for the central and southern Cascadia subduction zone shows more frequent (17 in the past 6700 yr) megathrust ruptures than previous coastal chronologies. The history is based on along-strike correlations of Bayesian age models derived from evaluation of 554 radiocarbon ages that date earthquake evidence at 14 coastal sites. We reconstruct a history that accounts for all dated stratigraphic evidence with the fewest possible ruptures by evaluating the sequence of age models for earthquake or tsunami contacts at each site, comparing the degree of temporal overlap of correlated site age models, considering evidence for closely spaced earthquakes at four sites, and hypothesizing only maximum-length megathrust ruptures. For the past 6700 yr, recurrence for all earthquakes is 370–420 yr. But correlations suggest that ruptures at ∼1.5 ka and ∼1.1 ka were of limited extent (<400 km). If so, post-3-ka recurrence for ruptures extending throughout central and southern Cascadia is 510–540 yr. But the range in the times between earthquakes is large: two instances may be ∼50 yr, whereas the longest are ∼550 and ∼850 yr. The closely spaced ruptures about 1.6 ka may illustrate a pattern common at subduction zones of a long gap ending with a great earthquake rupturing much of the subduction zone, shortly followed by a rupture of more limited extent. The ruptures of limited extent support the continued inclusion of magnitude-8 earthquakes, with longer ruptures near magnitude 9, in assessments of seismic hazard in the region
    corecore