50 research outputs found

    Chitosan but not chitin activates the inflammasome by a mechanism dependent upon phagocytosis

    Get PDF
    Chitin is an abundant polysaccharide found in fungal cell walls, crustacean shells, and insect exoskeletons. The immunological properties of both chitin and its deacetylated derivative chitosan are of relevance because of frequent natural exposure and their use in medical applications. Depending on the preparation studied and the end point measured, these compounds have been reported to induce allergic responses, inflammatory responses, or no response at all. We prepared highly purified chitosan and chitin and examined the capacity of these glycans to stimulate murine macrophages to release the inflammasome-associated cytokine IL-1beta. We found that although chitosan was a potent NLRP3 inflammasome activator, acetylation of the chitosan to chitin resulted in a near total loss of activity. The size of the chitosan particles played an important role, with small particles eliciting the greatest activity. An inverse relationship between size and stimulatory activity was demonstrated using chitosan passed through size exclusion filters as well as with chitosan-coated beads of defined size. Partial digestion of chitosan with pepsin resulted in a larger fraction of small phagocytosable particles and more potent inflammasome activity. Inhibition of phagocytosis with cytochalasin D abolished the IL-1beta stimulatory activity of chitosan, offering an explanation for why the largest particles were nearly devoid of activity. Thus, the deacetylated polysaccharide chitosan potently activates the NLRP3 inflammasome in a phagocytosis-dependent manner. In contrast, chitin is relatively inert

    Improving the Study of Protein Glycosylation with New Tools for Glycopeptide Enrichment

    Get PDF
    High confidence methods are needed for determining the glycosylation profiles of complex biological samples as well as recombinant therapeutic proteins. A common glycan analysis workflow involves liberation of N-glycans from glycoproteins with PNGase F or O-glycans by hydrazinolysis prior to their analysis. This method is limited in that it does not permit determination of glycan attachment sites. Alternative proteomics-based workflows are emerging that utilize site-specific proteolysis to generate peptide mixtures followed by selective enrichment strategies to isolate glycopeptides. Methods designed for the analysis of complex samples can yield a comprehensive snapshot of individual glycans species, the site of attachment of each individual glycan and the identity of the respective protein in many cases. This chapter will highlight advancements in enzymes that digest glycoproteins into distinct fragments and new strategies to enrich specific glycopeptides

    Kluyveromyces lactis LAC4 Promoter Variants That Lack Function in Bacteria but Retain Full Function in K. lactis

    No full text
    The strong LAC4 promoter (P(LAC4)) from Kluyveromyces lactis has been extensively used to drive expression of heterologous proteins in this industrially important yeast. A drawback of this expression method is the serendipitous ability of P(LAC4) to promote gene expression in Escherichia coli. This can interfere with the process of assembling expression constructs in E. coli cells prior to their introduction into yeast cells, especially if the cloned gene encodes a protein that is detrimental to bacteria. In this study, we created a series of P(LAC4) variants by targeted mutagenesis of three DNA sequences (PBI, PBII, and PBIII) that resemble the E. coli Pribnow box element of bacterial promoters and that reside immediately upstream of two E. coli transcription initiation sites associated with P(LAC4). Mutation of PBI reduced the bacterial expression of a reporter protein (green fluorescent protein [GFP]) by ∼87%, whereas mutation of PBII and PBIII had little effect on GFP expression. Deletion of all three sequences completely eliminated GFP expression. Additionally, each promoter variant expressed human serum albumin in K. lactis cells to levels comparable to wild-type P(LAC4). We created a novel integrative expression vector (pKLAC1) containing the P(LAC4) variant lacking PBI and used it to successfully clone and express the catalytic subunit of bovine enterokinase, a protease that has historically been problematic in E. coli cells. The pKLAC1 vector should aid in the cloning of other potentially toxic genes in E. coli prior to their expression in K. lactis

    In vivo incorporation of an azide-labeled sugar analog to detect mammalian glycosylphosphatidylinositol molecules isolated from the cell surface

    Get PDF
    AbstractN-Acetylgalactosamine (GalNAc) linked to the first mannose of glycosylphosphatidylinositol (GPI) core has been previously reported to be heterogeneously present on some mammalian GPI-anchored proteins. Here we present a method for profiling GalNAc-containing GPI-anchored proteins in mammalian cells by metabolic labeling with tetraacetylated N-azidoacetylgalactosamine (GalNAz) followed by biotinylation of the incorporated sugar analog. We have labeled both endogenous and recombinant GPI-anchored proteins with GalNAz, and demonstrated that the azide-activated sugar gets incorporated into the GPI glycan, likely as an unsubstituted side branch of the core structure. GalNAz was detected only on GPI molecules attached to proteins, and not on GPI precursors, indicating that GalNAc modification takes place after the GPI anchor is transferred to protein. We have highlighted the utility of this cell labeling approach by demonstrating the ability to examine specific GalNAc-containing GPI-anchored proteins isolated non-destructively from separate membrane domains (apical and basolateral) in polarized epithelial cells. This study represents the first demonstration of site-specific in vivo labeling of a GPI moiety with a synthetic sugar analog

    Characterization of a Nucleus-Encoded Chitinase from the Yeast Kluyveromyces lactis

    No full text
    Endogenous proteins secreted from Kluyveromyces lactis were screened for their ability to bind to or to hydrolyze chitin. This analysis resulted in identification of a nucleus-encoded extracellular chitinase (KlCts1p) with a chitinolytic activity distinct from that of the plasmid-encoded killer toxin α-subunit. Sequence analysis of cloned KlCTS1 indicated that it encodes a 551-amino-acid chitinase having a secretion signal peptide, an amino-terminal family 18 chitinase catalytic domain, a serine-threonine-rich domain, and a carboxy-terminal type 2 chitin-binding domain. The association of purified KlCts1p with chitin is stable in the presence of high salt concentrations and pH 3 to 10 buffers; however, complete dissociation and release of fully active KlCts1p occur in 20 mM NaOH. Similarly, secreted human serum albumin harboring a carboxy-terminal fusion with the chitin-binding domain derived from KlCts1p also dissociates from chitin in 20 mM NaOH, demonstrating the domain's potential utility as an affinity tag for reversible chitin immobilization or purification of alkaliphilic or alkali-tolerant recombinant fusion proteins. Finally, haploid K. lactis cells harboring a cts1 null mutation are viable but exhibit a cell separation defect, suggesting that KlCts1p is required for normal cytokinesis, probably by facilitating the degradation of septum-localized chitin
    corecore