202 research outputs found

    Spitzer Observations of Black Hole Low-mass X-ray Binaries: Assessing the Non-stellar Infrared Component

    Get PDF
    We have combined ground-based optical and near-infrared data with Spitzer Space Telescope mid-infrared data for five black hole (BH) soft X-ray transients (SXTs) in order to determine the levels of near- and mid-infrared emission from sources other than the secondary star. Mid-infrared emission from an accretion disk, circumbinary dust, and/or a jet could act as sources of near-infrared contamination, thereby diluting ellipsoidal variations of the secondary star and affecting determined BH mass estimates. Based on optical to mid-infrared spectral energy distribution modeling of the five SXTs along with the prototype, V616 Mon, we detected mid-infrared excesses in half of the systems, and suggest that the excesses detected from these systems arise from non-thermal synchrotron jets rather than circumbinary dust disks

    Stellar or Non-Stellar Light? Determining Near-Infrared Contamination in Low Mass X-ray Binaries

    Get PDF
    Low-mass X-ray binary (LMXB) systems are comprised of a low-mass, K or M dwarflike star orbiting a compact object. Stellar black hole masses and their distributions are important inputs for binary evolution and supernova models. Currently, the main limiting factor in determining accurate black hole masses in LMXBs is the uncertainty of the orbital inclination angle due to an unknown amount of contaminating light in the near infrared. If present, this light dilutes the ellipsoidal variations of the low-mass secondary star, and thus gives the appearance of a lower orbital inclination system. It has been generally thought that the near infrared ellipsoidal light curves of these systems were relatively uncontaminated and represented primarily the light from the low-mass secondary star; however, recent disk and jet models have thrust this thinking into question. We combine our data from the Spitzer Space Telescope with our ground-based optical and near infrared data for several LMXBs to characterize and derive the amount of light contaminating the near-infrared ellipsoidal variations of the low-mass secondary star

    INTEGRAL and New Classes of High-Mass X-ray Binaries

    Full text link
    The gamma-ray observatory INTEGRAL, launched in October 2002, produces a wealth of discoveries and new results on compact high energy Galactic objects, nuclear gamma-ray line emission, diffuse line and continuum emission, cosmic background radiation, AGN and high energy transients. Two important serendipitous discoveries made by the INTEGRAL mission are new classes of X-ray binaries, namely the highly-obscured high-mass X-ray binaries, and the super-giant fast transients. In this paper I will review the current status of these discoveries.Comment: 3 pages, 1 figure, submitted; Proceedings "The nature and evolution of X-ray binaries in diverse environments", St Petersburg/FL, USA, 28 Oct - 02 Nov 200

    X-Ray Binaries and the Dynamical States of Globular Clusters

    Full text link
    We summarize and discuss recent work (Fregeau 2007) that presents the confluence of three results suggesting that most Galactic globular clusters are still in the process of core contraction, and have not yet reached the thermal equilibrium phase driven by binary scattering interactions: that 1) the three clusters that appear to be overabundant in X-ray binaries per unit encounter frequency are observationally classified as "core-collapsed," 2) recent numerical simulations of cluster evolution with primordial binaries show that structural parameters of clusters in the binary-burning phase agree only with "core-collapsed" clusters, and 3) a cluster in the binary-burning phase for the last few Gyr should have about 5 times more dynamically formed X-ray sources than if it were in the core contraction phase for the same time.Comment: Conference proceedings from "A Population Explosion: The Nature and Evolution of X-ray Binaries in Diverse Environments," 28 Oct - 2 Nov, St. Petersburg Beach, FL. 4 page

    Spitzer Space Telescope Observations of Low Mass X-ray Binaries

    Get PDF
    We present preliminary results from our archival Spitzer Space Telescope program aimed at characterizing the mid-IR properties of compact objects, both isolated and in binary systems, i.e. white dwarfs, X-ray binaries, cataclysmic variables, and magnetars. Most of these sources are too faint at mid-IR wavelengths to be observable from the ground, so this study provides the very first comprehensive look at the mid-IR emission of these objects. Here we present our results for the low mass X-ray binaries. We considered all of the systems listed in the most recent catalog of Liu et al. (2007) that have known optical counterparts. The particular goals of our projects encompass: to establish the mid-IR spectral energy distribution, to search for the signatures of jets, circumbinary disks, low mass or planetary companions and debris disks, and to study the local environment of these sources.Comment: 6 pages, updated and expanded version of article to appear in Proceedings of "A Population Explosion: The Nature and Evolution of X-ray Binaries in Diverse Environments", 28 Oct - 2 Nov, St. Pete Beach, FL; eds. R.M. Bandyopadhyay, S. Wachter, D. Gelino, C.R. Gelino; AIP Conference Proceedings Serie

    Multiwavelength Studies of X-ray Binaries

    Full text link
    Simultaneous multiwavelength studies of X-ray binaries have been remarkably successful and resulted in improved physical constraints, a new understanding of the dependence of mass accretion rate on X-ray state, as well as insights on the time-dependent relationship between disk structure and mass-transfer rate. I will give some examples of the tremendous gains we have obtained in our understanding of XRBs by using multiwavelength observations. I will end with an appeal that while Spitzer cryogens are still available a special effort be put forth to obtaining coordinated observations including the mid-infrared: Whereas the optical and near-IR originate as superpositions of the secondary star and of accretion processes, the mid-IR crucially detects jet synchrotron emission from NSs that is virtually immeasurable at other wavelengths. A further benefit of Spitzer observations is that mid-infrared wavelengths can easily penetrate regions that are heavily obscured. Many X-ray binaries lie in the Galactic plane and as such are often heavily obscured in the optical by interstellar extinction. The infrared component of the SED, vital to the study of jets and dust, can be provided {\it only} by Spitzer; in the X-rays we currently have an unprecedented six satellites available and in the optical and radio dozens of ground-based facilities to complement the Spitzer observations.Comment: 5 pages including figures, in conference proceedings A Population Explosion: The Nature and Evolution of X-ray Binaries in Diverse Environments, eds. Bandyopadhyay, Wachter, Gelino, & Gelin

    The Galactic population of HMXBs as seen with INTEGRAL during its four first years of activity

    Full text link
    We collected the parameters (position, absorption, spin, orbital period, etc..), when known, of all Galactic sources detected by INTEGRAL during its four first years of activity. We use these parameters to test theoretical predictions. For example, it is clear that HMXBs tend to be found mostly in the tangential direction of the Galactic arms, while LMXBs tend to be clustered in the Galactic bulge. We then focus on HMXBs and present two possible new tools, in addition to the well-known ``Corbet-diagram'', to distinguish between Be-HMXBs and Sg-HMXBsComment: 5 pages, 3 figures proceedings of "A population explosion: the nature and evolution of X-ray binaries in diverse environments", conference held in St.Petersburg Beach, Florida; R.M.Bandyopadhyay, S.Wachter, D.Gelino, C.R.Gelino, ed

    Probing Clumpy Stellar Winds in SFXTs

    Full text link
    Quantitative constraints on the wind clumping of massive stars can be obtained from the study of the hard X-ray variability of SFXTs. In these systems, a large fraction of the hard X-ray emission is emitted in the form of flares with typical duration of 3 ksec, frequency of 7 days and luminosity of 103610^{36} ergs/s. Such flares are most probably emitted by the interaction of a compact object orbiting at 10\sim10 R_* with wind clumps (10222310^{22-23} g). The density ratio between the clumps and the inter-clump medium is 102410^{2-4} . The parameters of the clumps and of the inter-clump medium are in good agreement with macro-clumping scenario and line-driven instability simulations.Comment: 3 pages, A Population Explosion: The Nature and Evolution of X-ray Binaries in Diverse Environment

    The inclination angle and mass of the black hole in XTE J1118+480

    Get PDF
    We have obtained optical and infrared photometry of the quiescent soft X-ray transient XTE J1118+480. In addition to optical and J-band variations, we present H- and Ks-band ellipsoidal variations for this system. We model the variations in all bands simultaneously with the WD98 light curve modeling code. The infrared colors of the secondary star in this system are consistent with those of a K7 V, while there is evidence for light from the accretion disk in the optical. Combining the models with the observed spectral energy distribution of the system, the most likely value for the orbital inclination angle is 68 degrees ±2 degrees. This inclination angle corresponds to a primary black hole mass of 8.53+/-0.60 M☉. Based on the derived physical parameters and infrared colors of the system, we determine a distance of 1.72+/-0.10 kpc to XTE J1118+480

    A High Contrast Imaging Survey of SIM Lite Planet Search Targets

    Get PDF
    With the development of extreme high contrast ground-based adaptive optics instruments and space missions aimed at detecting and characterizing Jupiter- and terrestrial-mass planets, it is critical that each target star be thoroughly vetted to determine whether it is a viable target given both the instrumental design and scientific goals of the program. With this in mind, we have conducted a high contrast imaging survey of mature AFGKM stars with the PALAO/PHARO instrument on the Palomar 200 inch telescope. The survey reached sensitivities sufficient to detect brown dwarf companions at separations of > 50 AU. The results of this survey will be utilized both by future direct imaging projects such as GPI, SPHERE and P1640 and indirect detection missions such as SIM Lite. Out of 84 targets, all but one have no close-in (0.45-1") companions and 64 (76%) have no stars at all within the 25" field-of-view. The sensitivity contrasts in the Ks passband ranged from 4.5 to 10 for this set of observations. These stars were selected as the best nearby targets for habitable planet searches owing to their long-lived habitable zones (> 1 billion years). We report two stars, GJ 454 and GJ 1020, with previously unpublished proper motion companions. In both cases, the companions are stellar in nature and are most likely M dwarfs based on their absolute magnitudes and colors. Based on our mass sensitivities and level of completeness, we can place an upper limit of ~17% on the presence of brown dwarf companions with masses >40 MJ at separations of 1 arcsecond. We also discuss the importance of including statistics on those stars with no detected companions in their field of view for the sake of future companion searches and an overall understanding of the population of low-mass objects around nearby stars.Comment: Accepted to PASP, Figure 7 available upon reques
    corecore