137 research outputs found

    Conversion between Triplet Pair States Is Controlled by Molecular Coupling in Pentadithiophene Thin Films

    Get PDF
    In singlet fission (SF) the initially formed correlated triplet pair state, 1(TT), may evolve toward independent triplet excitons or higher spin states of the (TT) species. The latter result is often considered undesirable from a light harvesting perspective but may be attractive for quantum information sciences (QIS) applications, as the final exciton pair can be spin-entangled and magnetically active with relatively long room temperature decoherence times. In this study we use ultrafast transient absorption (TA) and time-resolved electron paramagnetic resonance (TR-EPR) spectroscopy to monitor SF and triplet pair evolution in a series of alkyl silyl-functionalized pentadithiophene (PDT) thin films designed with systematically varying pairwise and long-range molecular interactions between PDT chromophores. The lifetime of the (TT) species varies from 40 ns to 1.5 μs, the latter of which is associated with extremely weak intermolecular coupling, sharp optical spectroscopic features, and complex TR-EPR spectra that are composed of a mixture of triplet and quintet-like features. On the other hand, more tightly coupled films produce broader transient optical spectra but simpler TR-EPR spectra consistent with significant population in 5(TT)0. These distinctions are rationalized through the role of exciton diffusion and predictions of TT state mixing with low exchange coupling J versus pure spin substate population with larger J. The connection between population evolution using electronic and spin spectroscopies enables assignments that provide a more detailed picture of triplet pair evolution than previously presented and provides critical guidance for designing molecular QIS systems based on light-induced spin coherence

    Automated bolus advisor control and usability study (ABACUS): does use of an insulin bolus advisor improve glycaemic control in patients failing multiple daily insulin injection (MDI) therapy? [NCT01460446]

    Get PDF
    BACKGROUND: People with T1DM and insulin-treated T2DM often do not follow and/or adjust their insulin regimens as needed. Key contributors to treatment non-adherence are fear of hypoglycaemia, difficulty and lack of self-efficacy associated with insulin dose determination. Because manual calculation of insulin boluses is both complex and time consuming, people may rely on empirical estimates, which can result in persistent hypoglycaemia and/or hyperglycaemia. Use of automated bolus advisors (BA) has been shown to help insulin pump users to more accurately meet prandial insulin dosage requirements, improve postprandial glycaemic excursions, and achieve optimal glycaemic control with an increased time within optimal range. Use of a BA containing an early algorithm based on sliding scales for insulin dosing has also been shown to improve HbA1c levels in people treated with multiple daily insulin injections (MDI). We designed a study to determine if use of an automated BA can improve clinical and psychosocial outcomes in people treated with MDI. METHODS/DESIGN: The Automated Bolus Advisor Control and Usability Study (ABACUS) is a 6-month, prospective, randomised, multi-centre, multi-national trial to determine if automated BA use improves glycaemic control as measured by a change in HbA1c in people using MDI with elevated HbA1c levels (#62;7.5%). A total of 226 T1DM and T2DM participants will be recruited. Anticipated attrition of 20% will yield a sample size of 90 participants, which will provide #62;80% power to detect a mean difference of 0.5%, with SD of 0.9%, using a one-sided 5% t-test, with 5% significance level. Other measures of glycaemic control, self-care behaviours and psychosocial issues will also be assessed. DISCUSSION: It is critical that healthcare providers utilise available technologies that both facilitate effective glucose management and address concerns about safety and lifestyle. Automated BAs may help people using MDI to manage their diabetes more effectively and minimise the risk of long-term diabetes related complications. Findings from a recent study suggest that BA use positively addresses both safety and lifestyle concerns; however, randomised trials are needed to confirm these perceptions and determine whether bolus advisor use improves clinical outcomes. Our study is designed to make these assessments. TRIAL REGISTRATION: NCT0146044

    Lost in translation: A disconnect between the science and Medicare coverage criteria for continuous subcutaneous insulin infusion

    Get PDF
    Numerous studies have demonstrated the clinical value and safety of insulin pump therapy in type 1 diabetes and type 2 diabetes populations. However, the eligibility criteria for insulin pump coverage required by the Centers for Medicare & Medicaid Services (CMS) discount conclusive evidence that supports insulin pump use in diabetes populations that are currently deemed ineligible. This article discusses the limitations and inconsistencies of the insulin pump eligibility criteria relative to current scientific evidence and proposes workable solutions to address this issue and improve the safety and care of all individuals with diabetes

    Spectroscopic Identification of Active Sites of Oxygen-Doped Carbon for Selective Oxygen Reduction to Hydrogen Peroxide

    Get PDF
    The electrochemical synthesis of hydrogen peroxide (H2O2) via a two-electron (2 e−) oxygen reduction reaction (ORR) process provides a promising alternative to replace the energy-intensive anthraquinone process. Herein, we develop a facile template-protected strategy to synthesize a highly active quinone-rich porous carbon catalyst for H2O2 electrochemical production. The optimized PCC900 material exhibits remarkable activity and selectivity, of which the onset potential reaches 0.83 V vs. reversible hydrogen electrode in 0.1 M KOH and the H2O2 selectivity is over 95 % in a wide potential range. Comprehensive synchrotron-based near-edge X-ray absorption fine structure (NEXAFS) spectroscopy combined with electrocatalytic characterizations reveals the positive correlation between quinone content and 2 e− ORR performance. The effectiveness of chair-form quinone groups as the most efficient active sites is highlighted by the molecule-mimic strategy and theoretical analysis

    AFP, PIVKAII, GP3, SCCA-1 and follisatin as surveillance biomarkers for hepatocellular cancer in non-alcoholic and alcoholic fatty liver disease

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The incidence and mortality of hepatocellular cancer (HCC) complicating alcoholic and non-alcoholic fatty liver diseases (ALD and NAFLD) is rising in western societies. Despite knowing the at risk populations for HCC development, the lack of sensitive and specific means of surveillance hampers disease detection at curable stages. The most widely used serum HCC marker is alpha-fetoprotein (AFP), while PIVKA-II, glypican-3 (GP3) and Squamous Cell Carcinoma Antigen -1 (SCCA-1) have been proposed as new biomarkers. Assessment of these HCC biomarkers has largely been performed in patients with viral hepatitis. We conducted a cross sectional study assessing the value of these serum proteins, as well a novel candidate biomarker -follistatin – in patients with HCC arising on a background of ALD or NAFLD.</p> <p>Methods</p> <p>Pre-treatment serum samples from 50 patients with HCC arising on a background of ALD (n = 31) or NAFLD (n = 19) were assessed by specific ELISA assay for PIVKAII, Glypican-3, SCCA-1 and Follistatin. Results were compared and contrasted with a control patient group with biopsy proven steatohepatitis-related cirrhosis (n = 41). The diagnostic accuracy of each of the candidate biomarkers was evaluated using receiver operating characteristic (ROC) curve analysis, reporting the area under the curve (AUC) and its 95% confidence interval (CI). Performance was compared to that of the established biomarker, AFP.</p> <p>Results</p> <p>Serum levels of all proteins were assessed by specific ELISA assays. GP3, SCCA-1 and follistatin had no HCC surveillance benefit in these patients. AFP and PIVKAII were superior to the other markers, particularly in combination.</p> <p>Conclusion</p> <p>We conclude that while novel means of surveillance are urgently required, the combination of AFP and PIVKAII for HCC is an improvement on AFP alone in ALD/NAFLD patients. Furthermore, our data in this homogenous subset of patients- particularly that confirming no role for SCCA-1 – suggests that the choice of optimal biomarkers for HCC surveillance may be determined by the aetiology of underlying chronic liver disease.</p

    The Electronic Influence of Ring Substituents and Ansa Bridges in Zirconocene Complexes as Probed by Infrared Spectroscopic, Electrochemical, and Computational Studies

    Get PDF
    The electronic influence of unbridged and ansa-bridged ring substituents on a zirconocene center has been studied by means of IR spectroscopic, electrochemical, and computational methods. With respect to IR spectroscopy, the average of the symmetric and asymmetric stretches (ν_(CO(av))) of a large series of dicarbonyl complexes (Cp^R)_2Zr(CO)_2 has been used as a probe of the electronic influence of a cyclopentadienyl ring substituent. For unbridged substituents (Me, Et, Pri, But, SiMe_3), ν_(CO(av)) on a per substituent basis correlates well with Hammett σ_(meta) parameters, thereby indicating that the influence of these substituents is via a simple inductive effect. In contrast, the reduction potentials (E°) of the corresponding dichloride complexes (Cp^R)_2ZrCl_2 do not correlate well with Hammett σ_(meta) parameters, thereby suggesting that factors other than the substituent inductive effect also influence E°. Ansa bridges with single-atom linkers, for example [Me_2C] and [Me_2Si], exert a net electron-withdrawing effect, but the effect is diminished upon increasing the length of the bridge. Indeed, with a linker comprising a three-carbon chain, the [CH_2CH_2CH_2] ansa bridge becomes electron-donating. In contrast to the electron-withdrawing effect observed for a single [Me_2Si] ansa bridge, a pair of vicinal [Me_2Si] ansa bridges exerts an electron-donating effect relative to that from the single bridge. DFT calculations demonstrate that the electron-withdrawing effect of the [Me_2C] and [Me_2Si] ansa-bridges is due to stabilization of the cyclopentadienyl ligand acceptor orbital, which subsequently enhances back-donation from the metal. The calculations also indicate that the electron-donating effect of two vicinal [Me_2Si] ansa bridges, relative to that of a single bridge, is a result of it enforcing a ligand conformation that reduces back-donation from the metal

    Bioelectrical impedance phase angle in clinical practice: implications for prognosis in stage IIIB and IV non-small cell lung cancer

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>A frequent manifestation of advanced lung cancer is malnutrition, timely identification and treatment of which can lead to improved patient outcomes. Bioelectrical impedance analysis (BIA) is an easy-to-use and non-invasive technique to evaluate changes in body composition and nutritional status. We investigated the prognostic role of BIA-derived phase angle in advanced non-small cell lung cancer (NSCLC).</p> <p>Methods</p> <p>A case series of 165 stages IIIB and IV NSCLC patients treated at our center. The Kaplan Meier method was used to calculate survival. Cox proportional hazard models were constructed to evaluate the prognostic effect of phase angle, independent of stage at diagnosis and prior treatment history.</p> <p>Results</p> <p>93 were males and 72 females. 61 had stage IIIB disease at diagnosis while 104 had stage IV. The median phase angle was 5.3 degrees (range = 2.9 – 8). Patients with phase angle <= 5.3 had a median survival of 7.6 months (95% CI: 4.7 to 9.5; n = 81), while those with > 5.3 had 12.4 months (95% CI: 10.5 to 18.7; n = 84); (p = 0.02). After adjusting for age, stage at diagnosis and prior treatment history we found that every one degree increase in phase angle was associated with a relative risk of 0.79 (95% CI: 0.64 to 0.97, P = 0.02).</p> <p>Conclusion</p> <p>We found BIA-derived phase angle to be an independent prognostic indicator in patients with stage IIIB and IV NSCLC. Nutritional interventions targeted at improving phase angle could potentially lead to an improved survival in patients with advanced NSCLC.</p

    Bioelectrical impedance phase angle as a prognostic indicator in breast cancer

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Bioelectrical impedance analysis (BIA) is an easy-to-use, non-invasive, and reproducible technique to evaluate changes in body composition and nutritional status. Phase angle, determined by bioelectrical impedance analysis (BIA), detects changes in tissue electrical properties and has been hypothesized to be a marker of malnutrition. Since malnutrition can be found in patients with breast cancer, we investigated the prognostic role of phase angle in breast cancer.</p> <p>Methods</p> <p>We evaluated a case series of 259 histologically confirmed breast cancer patients treated at Cancer Treatment Centers of America. Kaplan Meier method was used to calculate survival. Cox proportional hazard models were constructed to evaluate the prognostic effect of phase angle independent of stage at diagnosis and prior treatment history. Survival was calculated as the time interval between the date of first patient visit to the hospital and the date of death from any cause or date of last contact/last known to be alive.</p> <p>Results</p> <p>Of 259 patients, 81 were newly diagnosed at our hospital while 178 had received prior treatment elsewhere. 56 had stage I disease at diagnosis, 110 had stage II, 46 had stage III and 34 had stage IV. The median age at diagnosis was 49 years (range 25 – 74 years). The median phase angle score was 5.6 (range = 1.5 – 8.9). Patients with phase angle <= 5.6 had a median survival of 23.1 months (95% CI: 14.2 to 31.9; n = 129), while those > 5.6 had 49.9 months (95% CI: 35.6 to 77.8; n = 130); the difference being statistically significant (p = 0.031). Multivariate Cox modeling, after adjusting for stage at diagnosis and prior treatment history found that every one unit increase in phase angle score was associated with a relative risk of 0.82 (95% CI: 0.68 to 0.99, P = 0.041). Stage at diagnosis (p = 0.006) and prior treatment history (p = 0.001) were also predictive of survival independent of each other and phase angle.</p> <p>Conclusion</p> <p>This study demonstrates that BIA-derived phase angle is an independent prognostic indicator in patients with breast cancer. Nutritional interventions targeted at improving phase angle could potentially lead to an improved survival in patients with breast cancer.</p

    Identification of microbial DNA in human cancer

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Microorganisms have been associated with many types of human diseases; however, a significant number of clinically important microbial pathogens remain to be discovered.</p> <p>Methods</p> <p>We have developed a genome-wide approach, called Digital Karyotyping Microbe Identification (DK-MICROBE), to identify genomic DNA of bacteria and viruses in human disease tissues. This method involves the generation of an experimental DNA tag library through Digital Karyotyping (DK) followed by analysis of the tag sequences for the presence of microbial DNA content using a compiled microbial DNA virtual tag library.</p> <p>Results</p> <p>To validate this technology and to identify pathogens that may be associated with human cancer pathogenesis, we used DK-MICROBE to determine the presence of microbial DNA in 58 human tumor samples, including brain, ovarian, and colorectal cancers. We detected DNA from Human herpesvirus 6 (HHV-6) in a DK library of a colorectal cancer liver metastasis and in normal tissue from the same patient.</p> <p>Conclusion</p> <p>DK-MICROBE can identify previously unknown infectious agents in human tumors, and is now available for further applications for the identification of pathogen DNA in human cancer and other diseases.</p
    corecore