26 research outputs found

    Automated CNC Micromachining for Integrated THz Waveguide Circuits

    Get PDF
    Computer Numerically Controlled (CNC) machining of splitblock waveguide circuits has become the primary method of constructing terahertz waveguide circuits. The majority of these circuits have been made on traditional CNC machining centers or on custom-made laboratory machining systems. At both the University of Arizona and Arizona State University, we have developed techniques for machining splitblock waveguide circuits using purpose-built ultra high precision CNC machining centers designed for micromachining. These systems combine the automation of a traditional CNC machining center, including a high capacity toolchanger, workpiece and tool metrology systems and a large work volume, with the precision of custom laboratory systems. The systems at UofA and ASU are built by Kern Micro and deliver typical measured dimensional accuracies of 2-3 microns. Waveguide surface finish has been measured with a Veeco white light interferometric microscope to be Ra~75 nm. Tools of sizes between 25 microns and 10mm are available, with toolchanger capacities of 24-32 tools

    Millimeter and Submillimeter Survey of the R Corona Australis Region

    Full text link
    Using a combination of data from the Antarctic Submillimeter Telescope and Remote Observatory (AST/RO), the Arizona Radio Observatory Kitt Peak 12m telescope and the Arizona Radio Observatory 10m Heinrich Hertz Telescope, we have studied the most active part of the R CrA molecular cloud in multiple transitions of Carbon Monoxide, HCO+^+ and 870\micron continuum emission. Since R CrA is nearby (130 pc), we are able to obtain physical spatial resolution as high as 0.01pc over an area of 0.16 pc2^2, with velocity resolution finer than 1 km/s. Mass estimates of the protostar driving the mm-wave emission derived from HCO+^+, dust continuum emission and kinematic techniques point to a young, deeply embedded protostar of ∼\sim0.5-0.75 M⊙_\odot, with a gaseous envelope of similar mass. A molecular outflow is driven by this source that also contains at least 0.8 M⊙_\odot of molecular gas with ∼\sim0.5 L⊙_\odot of mechanical luminosity. HCO+^+ lines show the kinematic signature of infall motions as well as bulk rotation. The source is most likely a Class 0 protostellar object not yet visible at near-IR wavelengths. With the combination of spatial and spectral resolution in our data set, we are able to disentangle the effects of infall, rotation and outflow towards this young object.Comment: 29 pages, 9 figures. Accepted for publication in the Astrophysical Journa

    Warm-Dense Molecular Gas in the ISM of Starbursts, LIRGs and ULIRGs

    Full text link
    The role of star formation in luminous and ultraluminous infrared galaxies is a hotly debated issue: while it is clear that starbursts play a large role in powering the IR luminosity in these galaxies, the relative importance of possible enshrouded AGNs is unknown. It is therefore important to better understand the role of star forming gas in contributing to the infrared luminosity in IR-bright galaxies. The J=3 level of 12CO lies 33K above ground and has a critical density of ~1.5 X 10^4 cm^-3. The 12CO(J=3-2) line serves as an effective tracer for warm-dense molecular gas heated by active star formation. Here we report on 12CO (J=3-2) observations of 17 starburst spirals, LIRGs and ULIRGs which we obtained with the Heinrich Hertz Submillimeter Telescope on Mt. Graham, Arizona. Our main results are the following: 1. We find a nearly linear relation between the infrared luminosity and warm-dense molecular gas such that the infrared luminosity increases as the warm-dense molecular gas to the power 0.92; We interpret this to be roughly consistent with the recent results of Gao & Solomon (2004a,b). 2. We find L_IR/M_H2 ratios ranging from ~10 to ~128 L_sun/M_sun using a standard CO-H2 conversion factor of 3 X 10^20 cm^-2 (K km s^-1)^-1. If this conversion factor is ~an order of magnitude less, as suggested in a recent statistical survey (Yao et al. 2003), then 2-3 of our objects may have significant contributions to the L_IR by dust-enshrouded AGNs.Comment: 15 Pages, 2 figures, Accepted for Publication in Ap

    Star Formation in the Northern Cloud Complex of NGC 2264

    Full text link
    We have made continuum and spectral line observations of several outflow sources in the Mon OB1 dark cloud (NGC 2264) using the Heinrich Hertz Telescope (HHT) and ARO 12m millimeter-wave telescope. This study explores the kinematics and outflow energetics of the young stellar systems observed and assesses the impact star formation is having on the surrounding cloud environment. Our data set incorporates 12CO(3-2), 13CO(3-2), and 12CO(1-0) observations of outflows associated with the sources IRAS 06382+1017 and IRAS 06381+1039, known as IRAS 25 and 27, respectively, in the northern cloud complex. Complementary 870 micron continuum maps were made with the HHT 19 channel bolometer array. Our results indicate that there is a weak (approximately less than 0.5%) coupling between outflow kinetic energy and turbulent energy of the cloud. An analysis of the energy balance in the IRAS 25 and 27 cores suggests they are maintaining their dynamical integrity except where outflowing material directly interacts with the core, such as along the outflow axes.Comment: 28 pages including 6 figures, to be published in ApJ 01 July 2006, v645, 1 issu

    High Spatial Resolution Observations of Two Young Protostars in the R Corona Australis Region

    Full text link
    We present multi-wavelength, high spatial resolution imaging of the IRS 7 region in the R Corona Australis molecular cloud. Our observations include 1.1 mm continuum and HCO^+ J = 3→23 \to 2 images from the SMA, ^{12}CO J = 3→23 \to 2 outflow maps from the DesertStar heterodyne array receiver on the HHT, 450 μ\mum and 850 μ\mum continuum images from SCUBA, and archival Spitzer IRAC and MIPS 24 \micron images. The accurate astrometry of the IRAC images allow us to identify IRS 7 with the cm source VLA 10W (IRS 7A) and the X-ray source X_W. The SMA 1.1 mm image reveals two compact continuum sources which are also distinguishable at 450 μ\mum. SMA 1 coincides with X-ray source CXOU J190156.4-365728 and VLA cm source 10E (IRS 7B) and is seen in the IRAC and MIPS images. SMA 2 has no infrared counterpart but coincides with cm source VLA 9. Spectral energy distributions constructed from SMA, SCUBA and Spitzer data yield bolometric temperatures of 83 K for SMA 1 and ≤\leq70 K for SMA 2. These temperatures along with the submillimeter to total luminosity ratios indicate that SMA 2 is a Class 0 protostar, while SMA 1 is a Class 0/Class I transitional object (L=17±617\pm6 \Lsun). The ^{12}CO J = 3→23 \to 2 outflow map shows one major and possibly several smaller outflows centered on the IRS 7 region, with masses and energetics consistent with previous work. We identify the Class 0 source SMA 2/VLA 9 as the main driver of this outflow. The complex and clumpy spatial and velocity distribution of the HCO^+ J = 3→23 \to 2 emission is not consistent with either bulk rotation, or any known molecular outflow activity.Comment: 31 pages, 8 figures, Accepted to Ap

    Prototype design of a dielectrically embedded mesh lens

    Get PDF
    Here we present a prototype design for a dielectrically embedded mesh lens consisting of stacked layers of printed circuit board (PCB) material and embedded copper elements. The dielectrically embedded mesh lens consists of layers of dielectric which contain subwavelength- dimension metal elements laid out in a grid fashion, and is both flat and lightweight. It has been demonstrated that the sizes of these metal elements can be varied according to their position in the apparatus, using models based on transmission line theory, to create a lens which focuses a plane wave at millimeter wavelength to a Gaussian beam with very low transmission loss, even without the use of antireflective coating. We present the phase design for our lens which was designed, using transmission line theory and electromagnetic modelling software, to operate at 20GHz. We further present an\ud analysis of the transmission line components which will make up the lens

    Prototype design of a dielectrically embedded mesh lens

    Get PDF
    Here we present a prototype design for a dielectrically embedded mesh lens consisting of stacked layers of printed circuit board (PCB) material and embedded copper elements. The dielectrically embedded mesh lens consists of layers of dielectric which contain subwavelength- dimension metal elements laid out in a grid fashion, and is both flat and lightweight. It has been demonstrated that the sizes of these metal elements can be varied according to their position in the apparatus, using models based on transmission line theory, to create a lens which focuses a plane wave at millimeter wavelength to a Gaussian beam with very low transmission loss, even without the use of antireflective coating. We present the phase design for our lens which was designed, using transmission line theory and electromagnetic modelling software, to operate at 20GHz. We further present an analysis of the transmission line components which will make up the lens

    Instrumental performance and results from testing of the BLAST-TNG receiver, submillimeter optics, and MKID arrays

    Full text link
    Polarized thermal emission from interstellar dust grains can be used to map magnetic fields in star forming molecular clouds and the diffuse interstellar medium (ISM). The Balloon-borne Large Aperture Submillimeter Telescope for Polarimetry (BLASTPol) flew from Antarctica in 2010 and 2012 and produced degree-scale polarization maps of several nearby molecular clouds with arcminute resolution. The success of BLASTPol has motivated a next-generation instrument, BLAST-TNG, which will use more than 3000 linear polarization sensitive microwave kinetic inductance detectors (MKIDs) combined with a 2.5m diameter carbon fiber primary mirror to make diffraction-limited observations at 250, 350, and 500 μ\mum. With 16 times the mapping speed of BLASTPol, sub-arcminute resolution, and a longer flight time, BLAST-TNG will be able to examine nearby molecular clouds and the diffuse galactic dust polarization spectrum in unprecedented detail. The 250 μ\mum detector array has been integrated into the new cryogenic receiver, and is undergoing testing to establish the optical and polarization characteristics of the instrument. BLAST-TNG will demonstrate the effectiveness of kilo-pixel MKID arrays for applications in submillimeter astronomy. BLAST-TNG is scheduled to fly from Antarctica in December 2017 for 28 days and will be the first balloon-borne telescope to offer a quarter of the flight for "shared risk" observing by the community.Comment: Presented at SPIE Millimeter, Submillimeter, and Far-Infrared Detectors and Instrumentation for Astronomy VIII, June 29th, 201
    corecore