4,902 research outputs found

    Tuning the relaxation rates of dual-mode T?/T? nanoparticle contrast agents: a study into the ideal system

    Get PDF
    Magnetic resonance imaging (MRI) is an excellent imaging modality. However the low sensitivity of the technique poses a challenge to achieving an accurate image of function at the molecular level. To overcome this, contrast agents are used; typically gadolinium based agents for T? weighted imaging, or iron oxide based agents for T? imaging. Traditionally, only one imaging mode is used per diagnosis although several physiological situations are known to interfere with the signal induced by the contrast agents in each individual imaging mode acquisition. Recently, the combination of both T? and T? imaging capabilities into a single platform has emerged as a tool to reduce uncertainties in MR image analysis. To date, contradicting reports on the effect on the contrast of the coupling of a T? and T? agent have hampered the application of these specialised probes. Herein, we present a systematic experimental study on a range of gadolinium-labelled magnetite nanoparticles envisioned to bring some light into the mechanism of interaction between T? and T? components, and advance towards the design of efficient (dual) T? and T? MRI probes. Unexpected behaviours observed in some of the constructs will be discussed. In this study, we demonstrate that the relaxivity of such multimodal probes can be rationally tuned to obtain unmatched potentials in MR imaging, exemplified by preparation of the magnetite-based nanoparticle with the highest T? relaxivity described to date

    Ground Support Equipment for Northrop Grumman Massive Heat Transfer Experiment

    Get PDF
    California Polytechnic State University students designed, built, and certified ground support equipment for the Northrop Grumman Massive Heat Transfer Experiment. The Cal Poly design team built the 10000, 20000, and 30000 assemblies to meet Northrop Grumman requirements. The requirements included interface limitations, design load factors, delivery, and testing specifications. The design process consists of requirements generation, conceptual design, preliminary design, design reviews, manufacturing, and certification. The hardware was successfully completed and is used at the Johnson Space and Kennedy Space Center

    Why simheuristics? : Benefits, limitations, and best practices when combining metaheuristics with simulation

    Get PDF
    Many decision-making processes in our society involve NP-hard optimization problems. The largescale, dynamism, and uncertainty of these problems constrain the potential use of stand-alone optimization methods. The same applies for isolated simulation models, which do not have the potential to find optimal solutions in a combinatorial environment. This paper discusses the utilization of modelling and solving approaches based on the integration of simulation with metaheuristics. These 'simheuristic' algorithms, which constitute a natural extension of both metaheuristics and simulation techniques, should be used as a 'first-resort' method when addressing large-scale and NP-hard optimization problems under uncertainty -which is a frequent case in real-life applications. We outline the benefits and limitations of simheuristic algorithms, provide numerical experiments that validate our arguments, review some recent publications, and outline the best practices to consider during their design and implementation stages

    The Herschel Digit Survey Of Weak-Line T Tauri Stars: Implications For Disk Evolution And Dissipation

    Get PDF
    As part of the "Dust, Ice, and Gas In Time (DIGIT)" Herschel Open Time Key Program, we present Herschel photometry (at 70, 160, 250, 350, and 500 mu m) of 31 weak-line T Tauri star (WTTS) candidates in order to investigate the evolutionary status of their circumstellar disks. Of the stars in our sample, 13 had circumstellar disks previously known from infrared observations at shorter wavelengths, while 18 of them had no previous evidence for a disk. We detect a total of 15 disks as all previously known disks are detected at one or more Herschel wavelengths and two additional disks are identified for the first time. The spectral energy distributions (SEDs) of our targets seem to trace the dissipation of the primordial disk and the transition to the debris disk regime. Of the 15 disks, 7 appear to be optically thick primordial disks, including 2 objects with SEDs indistinguishable from those of typical Classical T Tauri stars, 4 objects that have significant deficit of excess emission at all IR wavelengths, and 1 "pre-transitional" object with a known gap in the disk. Despite their previous WTTS classification, we find that the seven targets in our sample with optically thick disks show evidence for accretion. The remaining eight disks have weaker IR excesses similar to those of optically thin debris disks. Six of them are warm and show significant 24 mu m Spitzer excesses, while the last two are newly identified cold debris-like disks with photospheric 24 mu m fluxes, but significant excess emission at longer wavelengths. The Herschel photometry also places strong constraints on the non-detections, where systems with F-70/F-70,(*) greater than or similar to 5-15 and L-disk/L-* greater than or similar to 10(-3) to 10(-4) can be ruled out. We present preliminary models for both the optically thick and optically thin disks and discuss our results in the context of the evolution and dissipation of circumstellar disks.NASA through JPL/CaltechNASA through the Sagan Fellowship ProgramEuropean Commission PERG06-GA-2009-256513Agence Nationale pour la Recherche (ANR) of France ANR-2010-JCJC-0504-01CFHT 11AH96Astronom

    Vision-Based Traffic Data Collection Sensor for Automotive Applications

    Get PDF
    This paper presents a complete vision sensor onboard a moving vehicle which collects the traffic data in its local area in daytime conditions. The sensor comprises a rear looking and a forward looking camera. Thus, a representative description of the traffic conditions in the local area of the host vehicle can be computed. The proposed sensor detects the number of vehicles (traffic load), their relative positions and their relative velocities in a four-stage process: lane detection, candidates selection, vehicles classification and tracking. Absolute velocities (average road speed) and global positioning are obtained after combining the outputs provided by the vision sensor with the data supplied by the CAN Bus and a GPS sensor. The presented experiments are promising in terms of detection performance and accuracy in order to be validated for applications in the context of the automotive industry

    Novel minimally invasive tape suture osteosynthesis for instabilities of the pubic symphysis: a biomechanical study

    Get PDF
    INTRODUCTION Open book fractures are challenging injuries oftentimes requiring surgical treatment. The current treatment of choice is symphyseal plating, which requires extensive surgery and entirely limits physiological movement of the symphyseal joint, frequently resulting in implant failure. Therefore, we investigated the biomechanical properties of a semi-rigid implant (modified SpeedBridge™) as a minimally invasive tape suture construct for the treatment of open book fractures and evaluated the superiority of two techniques of implementation: criss-cross vs. triangle technique. MATERIALS AND METHODS Nine synthetic symphyseal joints were dissected creating an open book fracture. The different osteosynthesis methods (plating, modified SpeedBridge™ in criss-cross/triangle technique) were then applied. All constructs underwent horizontal and vertical loading, simulating biomechanical forces while sitting, standing and walking. For statistical analysis, dislocation (mm) and stiffness (N/mm) were calculated. RESULTS Symphyseal plating for the treatment of open book fractures proved to be a rigid osteosynthesis significantly limiting the physiological mobility of the symphyseal joint (dislocation: 0.08 ± 0.01~mm) compared to the tape sutures (dislocation: triangle technique 0.27 ± 0.07~mm, criss-cross technique 0.23 ± 0.05~mm) regarding horizontal tension (p 0.05 in all directions). Considering vertical loading, no statistical difference was found between all osteosynthesis methods (caudal: p = 0.41; cranial: p = 0.61). CONCLUSIONS Symphyseal plating proved to be the osteosynthesis method with the highest rigidity. The modified SpeedBridge™ as a semi-rigid suture construct provided statistically sufficient biomechanical stability while maintaining a minimum of symphyseal movement, consequently allowing ligamental healing of the injured joint without iatrogenic arthrodesis. Furthermore, both the criss-cross and the triangle technique displayed significant biomechanical stability without one method being superior

    Substantiating harm reduction and supporting tobacco regulatory science

    Get PDF
    A framework for the assessment of novel next-generation tobacco and nicotine products with the potential to reduce health risks compared with cigarettes should integrate scientific studies incorpor..

    Relatively low-temperature processing and its impact on device performance and reliability

    Get PDF
    Non-silicon, large-area/flexible electronics for the internet of things (IoT) has acquired substantial attention in recent years. Key electron devices to enable this technology include metal-oxide-semiconductor field effect transistors (MOSFETs), where ultra-thin and/or low-dimensional (i.e., 2D to a few layers) semiconductor materials may be required, like those found in thin-film transistors (TFTs) and transition metal dichalcogenide (TMD) FETs [1,2]. Whether TFT or TMDFET, a relatively low-temperature process commensurate with large-area/flex applications to enable large (i.e., greater than 300 mm) and/or flexible substrate fabrication is required. Furthermore, TMD materials may be implemented as the channel semiconductor to function as an ultra-thin body to mitigate short channel effects and extend further scaling as the future progresses in CMOS scaling. In addition, the gate dielectric insulator is another vital component of any MOSFET that requires investigation as part of the MOS stack in these types of transistors. Lastly, semiconductor materials mentioned herein do not have a universally accepted way to introduce dopants to form sources and drains. Thus, metal-semiconductor contacts are employed where the interface region of the contact plays a critical role in determining the conductivity/resistivity of the contact. Moreover, how the metal-semiconductor interface are formed also impacts the quality of the contact. Therefore, exploration of low-temperature processing, interfaces, and their impact on device performance and reliability will be critical to eventual implementation in future technologies. To ascertain the impact of low-temperature fabrication and critical interfaces, several process approaches and electrical characterization methods were employed [1-6]. In one case, for a TMD FET contact study, an oxygen plasma exposure in the contact region on MoS2 (a TMD material) is done prior to titanium deposition. The results demonstrate that contaminants and photoresist residue that still reside after development can noticeably impact electrical performance (Fig. 1). The O2 plasma removes the residue present at the surface of MoS2 without the use of a high temperature anneal, and subsequently improves the device performance significantly (Fig. 1) [1]. In another case, for a MOS-based TFT study, an investigation of low-temperature (\u3e 115°C) deposited zinc-based semiconductors was executed (Fig. 2). For ZnO and IGZO, saturation mobilities of 14.4 and 8.4 cm2/V-s, along with threshold voltages of 2.2 V and 2.0 V were obtained, respectively, demonstrating robust devices that also have an on/off ratio \u3e 108, with IOFF lower than 10-12 A. Furthermore, a hot carrier stress methodology demonstrated threshold voltage (VTH) shifts of 0.4 V and 1.8 V for ZnO and IGZO, respectively, after stress (Fig. 2) [2]. Continued research is required to ascertain the electrically active defects responsible for the VTH shift. Please click Additional Files below to see the full abstract

    A Modified Method for Whole Exome Resequencing from Minimal Amounts of Starting DNA

    Get PDF
    Next generation DNA sequencing (NGS) technologies have revolutionized the pace at which whole genome and exome sequences can be generated. However, despite these advances, many of the methods for targeted resequencing, such as the generation of high-depth exome sequences, are somewhat limited by the relatively large amounts of starting DNA that are normally required. In the case of tumour analysis this is particularly pertinent as many tumour biopsies often return submicrogram quantities of DNA, especially when tumours are microdissected prior to analysis. Here, we present a method for exome capture and resequencing using as little as 50 ng of starting DNA. The sequencing libraries generated by this minimal starting amount (MSA-Cap) method generate datasets that are comparable to standard amount (SA) whole exome libraries that use three micrograms of starting DNA. This method, which can be performed in most laboratories using commonly available reagents, has the potential to enhance large scale profiling efforts such as the resequencing of tumour exomes

    Synaptic inhibition in the lateral habenula shapes reward anticipation

    Full text link
    The lateral habenula (LHb) supports learning processes enabling the prediction of upcoming rewards. While reward-related stimuli decrease the activity of LHb neurons, whether this anchors on synaptic inhibition to guide reward-driven behaviors remains poorly understood. Here, we combine in vivo two-photon calcium imaging with Pavlovian conditioning in mice and report that anticipatory licking emerges along with decreases in cue-evoked calcium signals in individual LHb neurons. In vivo multiunit recordings and pharmacology reveal that the cue-evoked reduction in LHb neuronal firing relies on GABAA-receptor activation. In parallel, we observe a postsynaptic potentiation of GABAA-receptor-mediated inhibition, but not excitation, onto LHb neurons together with the establishment of anticipatory licking. Finally, strengthening or weakening postsynaptic inhibition with optogenetics and GABAA-receptor manipulations enhances or reduces anticipatory licking, respectively. Hence, synaptic inhibition in the LHb shapes reward anticipation. Keywords: GABA(A) receptors; cue-reward associative behavior; lateral habenula; synaptic inhibition; synaptic plasticit
    corecore