5 research outputs found

    Arboviruses as an unappreciated cause of non-malarial acute febrile illness in the Dschang Health District of western Cameroon

    Get PDF
    Acute febrile illness is a common problem managed by clinicians and health systems globally, particularly in the Tropics. In many regions, malaria is a leading and potentially deadly cause of fever; however, myriad alternative etiologies exist. Identifying the cause of fever allows optimal management, but this depends on many factors including thorough knowledge of circulating infections. Arboviruses such as dengue (DENV) cause fever and may be underdiagnosed in sub-Saharan Africa where malaria is a major focus. We examined cases of fever in western Cameroon that tested negative for malaria and found 13.5% (13/96) were due to DENV, with 75% (9/12) of these being DENV serotype 2 infections. Two complete DENV2 genomes were obtained and clustered closely to recent isolates from Senegal and Burkina Faso. The seroprevalence of DENV in this region was 24.8% (96/387). Neutralizing antibodies to DENV2 were detected in all (15/15) seropositive samples tested. Chikungunya (CHIKV) is an arthritogenic alphavirus that is transmitted by Aedes mosquitoes, the same principal vector as DENV. The seroprevalence for CHIKV was 15.7% (67/427); however, CHIKV did not cause a single case of fever in the 96 subjects tested. Of note, being seropositive for one arbovirus was associated with being seropositive for the other (Χ2 = 16.8, p<0.001). Taken together, these data indicate that Aedes-transmitted arboviruses are endemic in western Cameroon and are likely a common but underappreciated cause of febrile illness. This work supports the need for additional study of arboviruses in sub-Saharan Africa and efforts to improve diagnostic capacity, surveillance systems, and arbovirus prevention strategies

    Molecular characterization of antimicrobial resistance related genes in E. coli, Salmonella and Klebsiella isolates from broilers in the West Region of Cameroon

    No full text
    Background Antibiotic resistance has become an enduring threat to human health. This has prompted extensive research to identify the determinants responsible in a bid to fight the spread of resistance and also develop new antibiotics. However, routine procedures focus on identifying genetic determinants of resistance only on phenotypically resistant isolates. We aimed to characterise plasmid mediated resistance determinants in key Enterobacteriaceae isolates with differential phenotypic susceptibility profiles and evaluated the contribution of resistance genes on phenotypic expression of susceptibility. Methods The study was carried out on 200 Enterobacteriaceae isolates belonging to the genera E. coli, Salmonella, and Klebsiella; 100 resistant and 100 susceptible to quinolones, aminoglycosides, and ESBL-producing as determined by disk diffusion. Reduced susceptibility in susceptible isolates was determined as an increased MIC by broth microdilution. Plasmid-borne resistance genes were sought in all isolates by endpoint PCR. We performed correlations tests to determine the relationship between the occurrence of resistance genes and increased MIC in susceptible isolates. We then used the notion of penetrance to show adequacy between resistance gene carriage and phenotypic resistance as well as diagnostic odds ratio to evaluate how predictable phenotypic susceptibility profile could determine the presence of resistant genes in the isolates. Results Reduced susceptibility was detected in 30% (9/30) ESBL negative, 50% (20/40) quinolone-susceptible and 53.33% (16/30) aminoglycoside-susceptible isolates. Plasmid-borne resistance genes were detected in 50% (15/30) of ESBL negative, 65% (26/40) quinolone susceptible and 66.67% (20/30) aminoglycoside susceptible isolates. Reduced susceptibility increased the risk of susceptible isolates carrying resistance genes (ORs 4.125, 8.36, and 8.89 respectively for ESBL, quinolone, and aminoglycoside resistance genes). Resistance gene carriage correlated significantly to reduced susceptibility for quinolone and aminoglycoside resistance genes (0.002 and 0.015 at CI95). Gene carriage correlated with phenotypic resistance at an estimated 64.28% for ESBL, 56.90% for quinolone, and 58.33% for aminoglycoside resistance genes. Conclusions A high carriage of plasmid-mediated genes for ESBL, quinolone, and aminoglycoside resistance was found among the Enterobacteriaceae tested. However, gene carriage was not always correlated with phenotypic expression. This allows us to suggest that assessing genetic determinants of resistance should not be based on AST profile only. Further studies, including assessing the role of chromosomal determinants will shed light on other factors that undermine antimicrobial susceptibility locally
    corecore