121 research outputs found

    TRPV1 promotes opioid analgesia during inflammation

    Get PDF
    International audienc

    Prion protein attenuates excitotoxicity by inhibiting NMDA receptors

    Get PDF
    It is well established that misfolded forms of cellular prion protein (PrP [PrPC]) are crucial in the genesis and progression of transmissible spongiform encephalitis, whereas the function of native PrPC remains incompletely understood. To determine the physiological role of PrPC, we examine the neurophysiological properties of hippocampal neurons isolated from PrP-null mice. We show that PrP-null mouse neurons exhibit enhanced and drastically prolonged N-methyl-d-aspartate (NMDA)–evoked currents as a result of a functional upregulation of NMDA receptors (NMDARs) containing NR2D subunits. These effects are phenocopied by RNA interference and are rescued upon the overexpression of exogenous PrPC. The enhanced NMDAR activity results in an increase in neuronal excitability as well as enhanced glutamate excitotoxicity both in vitro and in vivo. Thus, native PrPC mediates an important neuroprotective role by virtue of its ability to inhibit NR2D subunits

    Role of angiotensin II type 1A receptor phosphorylation, phospholipase D, and extracellular calcium in isoform-specific protein kinase C membrane translocation responses

    Get PDF
    The angiotensin II type 1A receptor (AT(1A)R) plays an important role in cardiovascular function and as such represents a primary target for therapeutic intervention. The AT(1A)R is coupled via G(q) to the activation of phospholipase C, the hydrolysis of phosphoinositides, release of calcium from intracellular stores, and the activation of protein kinase C (PKC). We show here that PKC beta I and PKC beta II exhibit different membrane translocation patterns in response to AT(1A)R agonist activation. Whereas PKC beta II translocation to the membrane is transient, PKC beta I displays additional translocation responses: persistent membrane localization and oscillations between the membrane and cytosol following agonist removal. The initial translocation of PKC beta I requires the release of calcium from intracellular stores and the activation of phospholipase C, but persistent membrane localization is dependent upon extracellular calcium influx. The mutation of any of the three PKC phosphorylation consensus sites (Ser-331, Ser-338, and Ser-348) localized within the AT(1A)R C-tail significantly increases the probability that persistent increases in diacylglycerol levels and PKC beta I translocation responses will be observed. The persistent increase in AT(1A)R-mediated diacylglycerol formation is mediated by the activation of phospholipase D. Although the persistent PKC beta I membrane translocation response is absolutely dependent upon the PKC activity-dependent recruitment of an extracellular calcium current, it does not require the activation of phospholipase D. Taken together, we show that the patterning of AT(1A)R second messenger response patterns is regulated by heterologous desensitization and PKC isoform substrate specificity

    Spicing up the sensation of stretch: TRPV1 controls mechanosensitive Piezo channels

    Full text link
    Phosphoinositide abundance regulates mechanosensitive Piezo channel activity.</jats:p

    GPCR and Voltage-Gated Calcium Channels (VGCC) Signaling Complexes

    Full text link
    corecore