4 research outputs found

    A systematic study of non-ideal contacts in integer quantum Hall systems

    Full text link
    In the present article we investigate the influence of the contact region on the distribution of the chemical potential in integer quantum Hall samples, as well as the longitudinal and Hall resistance as a function of the magnetic field. First we use a standard quantum Hall sample geometry and analyse the influence of the length of the leads where current enters/leaves the sample and the ratio of the contact width to the width of these leads. Furthermore we investigate potential barriers in the current injecting leads and the measurement arms in order to simulate non-ideal contacts. Second we simulate nonlocal quantum Hall samples with applied gating voltage at the metallic contacts. For such samples it has been found experimentally that both the longitudinal and Hall resistance as a function of the magnetic field can change significantly. Using the nonequilibrium network model we are able to reproduce most qualitative features of the experiments.Comment: 29 pages, 16 Figure

    Strong-field dipole resonance. I. Limiting analytical cases

    Full text link
    We investigate population dynamics in N-level systems driven beyond the linear regime by a strong external field, which couples to the system through an operator with nonzero diagonal elements. As concrete example we consider the case of dipolar molecular systems. We identify limiting cases of the Hamiltonian leading to wavefunctions that can be written in terms of ordinary exponentials, and focus on the limits of slowly and rapidly varying fields of arbitrary strength. For rapidly varying fields we prove for arbitrary NN that the population dynamics is independent of the sign of the projection of the field onto the dipole coupling. In the opposite limit of slowly varying fields the population of the target level is optimized by a dipole resonance condition. As a result population transfer is maximized for one sign of the field and suppressed for the other one, so that a switch based on flopping the field polarization can be devised. For significant sign dependence the resonance linewidth with respect to the field strength is small. In the intermediate regime of moderate field variation, the integral of lowest order in the coupling can be rewritten as a sum of terms resembling the two limiting cases, plus correction terms for N>2, so that a less pronounced sign-dependence still exists.Comment: 34 pages, 1 figur
    corecore